টারবিয়াম হল একটি রাসায়নিক মৌল যার প্রতীক Tbপারমাণবিক সংখ্যা ৬৫। এটি একটি রূপালী-সাদা, বিরল মৃত্তিকা ধাতু যা ঘাতসহ ও নমনীয়। ল্যান্থানাইড সিরিজের নবম সদস্য টারবিয়াম একটি মোটামুটি তড়িৎ ধনাত্মক ধাতু যা পানির সাথে বিক্রিয়া করে হাইড্রোজেন গ্যাসের বিকাশ ঘটায়। টারবিয়ামকে প্রকৃতিতে কখনই মুক্ত মৌল হিসাবে পাওয়া যায় না, তবে এটি সেরাইট, গ্যাডোলিনাইট, মোনাজাইট, জেনোটাইম ও ইউক্সেনাইট সহ অনেক খনিজ পদার্থের মধ্যে রয়েছে।

টারবিয়াম   ৬৫Tb
পরিচয়
নাম, প্রতীক{{{name_bn}}}, Tb
উপস্থিতিরূপালী সাদা
পর্যায় সারণীতে {{{name_bn}}}
হাইড্রোজেন (other non-metal)
হিলিয়াম (noble gas)
লিথিয়াম (alkali metal)
বেরিলিয়াম (alkaline earth metal)
বোরন (metalloid)
কার্বন (other non-metal)
নাইট্রোজেন (other non-metal)
অক্সিজেন (other non-metal)
ফ্লোরিন (halogen)
নিয়ন (noble gas)
সোডিয়াম (alkali metal)
ম্যাগনেসিয়াম (alkaline earth metal)
অ্যালুমিনিয়াম (post-transition metal)
সিলিকন (metalloid)
ফসফরাস (other non-metal)
সালফার (other non-metal)
ক্লোরিন (halogen)
আর্গন (noble gas)
পটাশিয়াম (alkali metal)
ক্যালসিয়াম (alkaline earth metal)
স্ক্যানডিয়াম (transition metal)
টাইটানিয়াম (transition metal)
ভ্যানাডিয়াম (transition metal)
ক্রোমিয়াম (transition metal)
ম্যাঙ্গানিজ (transition metal)
লোহা (transition metal)
কোবাল্ট (transition metal)
নিকেল (transition metal)
তামা (transition metal)
দস্তা (transition metal)
গ্যালিয়াম (post-transition metal)
জার্মেনিয়াম (metalloid)
আর্সেনিক (metalloid)
সেলেনিয়াম (other non-metal)
ব্রোমিন (halogen)
ক্রিপ্টন (noble gas)
রুবিডিয়াম (alkali metal)
স্ট্রনসিয়াম (alkaline earth metal)
ইটরিয়াম (transition metal)
জিরকোনিয়াম (transition metal)
নাইওবিয়াম (transition metal)
মলিবডিনাম (transition metal)
টেকনিসিয়াম (transition metal)
রুথেনিয়াম (transition metal)
রোহডিয়াম (transition metal)
প্যালাডিয়াম (transition metal)
রুপা (transition metal)
ক্যাডমিয়াম (transition metal)
ইন্ডিয়াম (post-transition metal)
টিন (post-transition metal)
অ্যান্টিমনি (metalloid)
টেলুরিয়াম (metalloid)
আয়োডিন (halogen)
জেনন (noble gas)
সিজিয়াম (alkali metal)
বেরিয়াম (alkaline earth metal)
ল্যান্থানাম (lanthanoid)
সিরিয়াম (lanthanoid)
প্রাসিওডিমিয়াম (lanthanoid)
নিওডিমিয়াম (lanthanoid)
প্রমিথিয়াম (lanthanoid)
সামারিয়াম (lanthanoid)
ইউরোপিয়াম (lanthanoid)
গ্যাডোলিনিয়াম (lanthanoid)
টারবিয়াম (lanthanoid)
ডিসপ্রোসিয়াম (lanthanoid)
হলমিয়াম (lanthanoid)
এরবিয়াম (lanthanoid)
থুলিয়াম (lanthanoid)
ইটারবিয়াম (lanthanoid)
লুটেসিয়াম (lanthanoid)
হ্যাফনিয়াম (transition metal)
ট্যানটালাম (transition metal)
টাংস্টেন (transition metal)
রিনিয়াম (transition metal)
অসমিয়াম (transition metal)
ইরিডিয়াম (transition metal)
প্লাটিনাম (transition metal)
সোনা (transition metal)
পারদ (transition metal)
থ্যালিয়াম (post-transition metal)
সীসা (post-transition metal)
বিসমাথ (post-transition metal)
পোলোনিয়াম (post-transition metal)
এস্টাটিন (halogen)
রেডন (noble gas)
ফ্রান্সিয়াম (alkali metal)
রেডিয়াম (alkaline earth metal)
অ্যাক্টিনিয়াম (actinoid)
থোরিয়াম (actinoid)
প্রোটেক্টিনিয়াম (actinoid)
ইউরেনিয়াম (actinoid)
নেপচুনিয়াম (actinoid)
প্লুটোনিয়াম (actinoid)
অ্যামেরিসিয়াম (actinoid)
কুরিয়াম (actinoid)
বার্কেলিয়াম (actinoid)
ক্যালিফোর্নিয়াম (actinoid)
আইনস্টাইনিয়াম (actinoid)
ফার্মিয়াম (actinoid)
মেন্ডেলেভিয়াম (actinoid)
নোবেলিয়াম (actinoid)
লরেনসিয়াম (actinoid)
রাদারফোর্ডিয়াম (transition metal)
ডুবনিয়াম (transition metal)
সিবোরজিয়াম (transition metal)
বোহরিয়াম (transition metal)
হ্যাসিয়াম (transition metal)
মিটনেরিয়াম (unknown chemical properties)
ডার্মস্টেটিয়াম (unknown chemical properties)
রন্টজেনিয়াম (unknown chemical properties)
কোপার্নিসিয়াম (transition metal)
ইউনুনট্রিয়াম (unknown chemical properties)
ফেরোভিয়াম (unknown chemical properties)
ইউনুনপেন্টিয়াম (unknown chemical properties)
লিভেরমোরিয়াম (unknown chemical properties)
ইউনুনসেপটিয়াম (unknown chemical properties)
ইউনুনকটিয়াম (unknown chemical properties)


Tb

Bk
গ্যাডালিনিয়ামটারবিয়ামডিসপ্রোসিয়াম
পারমাণবিক সংখ্যা65
আদর্শ পারমাণবিক ভর
শ্রেণী, পর্যায়, ব্লকgroup n/a, [[পর্যায় {{{period}}}-এর মৌল|পর্যায় {{{period}}}]], [[{{{block}}}-ব্লক]]
ইলেকট্রন বিন্যাস{{{electron configuration}}}
per shell: ২, ৮, ১৮, ২৭, ৮, ২
ভৌত বৈশিষ্ট্য
গলনাঙ্ক1629 কে ​(1356 °সে, ​2473 °ফা)
স্ফুটনাঙ্ক3396 K ​(3123 °সে, ​5653 °ফা)
ঘনত্ব (ক.তা.-র কাছে)8.23 g·cm−৩ (০ °সে-এ, ১০১.৩২৫ kPa)
তরলের ঘনত্বm.p.: 7.65 g·cm−৩
ফিউশনের এনথালপি10.15 kJ·mol−১
বাষ্পীভবনের এনথালপি391 kJ·mol−১
তাপ ধারকত্ব28.91 J·mol−১·K−১
বাষ্প চাপ
P (Pa) ১০ ১০০ ১ k ১০ k ১০ k
at T (K) 1789 1979 (2201) (2505) (2913) (3491)
পারমাণবিক বৈশিষ্ট্য
তড়িৎ-চুম্বকত্ব1.2 (পলিং স্কেল) (?)
আয়নীকরণ বিভব১ম: 565.8 kJ·mol−১
২য়: 1110 kJ·mol−১
৩য়: 2114 kJ·mol−১
পারমাণবিক ব্যাসার্ধempirical: 177 pm
সমযোজী ব্যাসার্ধ194±5 pm
বিবিধ
কেলাসের গঠন ​ষড়ভুজ বন্ধ বস্তাবন্দী
[[File:ষড়ভুজ বন্ধ বস্তাবন্দী|50px|alt=ষড়ভুজ বন্ধ বস্তাবন্দী জন্য কেলাসের গঠনটারবিয়াম|ষড়ভুজ বন্ধ বস্তাবন্দী জন্য কেলাসের গঠনটারবিয়াম]]
শব্দের দ্রুতিপাতলা রডে: 2620 m·s−১ (at 20 °সে)
তাপীয় প্রসারাঙ্কat r.t. α, poly: 10.3 µm·m−১·K−১
তাপীয় পরিবাহিতা11.1 W·m−১·K−১
তড়িৎ রোধকত্ব ও পরিবাহিতাα, poly: 1.150 µΩ·m (at ক.তা.)
চুম্বকত্ব৩০০ কে.-এ প্যারাচৌম্বক
ইয়ংয়ের গুণাঙ্কα form: 55.7 GPa
কৃন্তন গুণাঙ্কα form: 22.1 GPa
আয়তন গুণাঙ্কα form: 38.7 GPa
পোয়াসোঁর অনুপাতα form: 0.261
ভিকার্স কাঠিন্য450–865 MPa
ব্রিনেল কাঠিন্য675–1200 MPa
ক্যাস নিবন্ধন সংখ্যা7440-27-9
ইতিহাস
নামকরণইটারবি (সুইডেন) অনুসারে, যেখানে এটি খনন করা হয়েছিল
আবিষ্কার১৮৪৩
সবচেয়ে স্থিতিশীল আইসোটোপ
মূল নিবন্ধ: [[{{{name_bn}}} আইসোটোপ]]
iso NA অর্ধায়ু DM DE (MeV) DP
157Tb syn 71 y ε 0.060 157Gd
158Tb syn 180 y ε 158Gd
β 158Dy
159Tb 100% stable
· তথ্যসূত্র

সুইডিশ রসায়নবিদ কার্ল গুস্তাফ মোসান্ডার ১৮৪৩ সালে রাসায়নিক মৌল হিসাবে টারবিয়াম আবিষ্কার করেছিলেন। তিনি এটিকে অবিশুদ্ধ ইট্রিয়াম অক্সাইড (Y2O3) হিসাবে সনাক্ত করেছিলেন। ইট্রিয়াম ও টারবিয়াম, পাশাপাশি এরবিয়াম ও ইটারবিয়াম সুইডেনের ইটারবি গ্রামের নামানুসারে নামকরণ করা হয়েছে। আয়ন বিনিময় কৌশলের উদ্ভবের আগ পর্যন্ত টারবিয়াম বিশুদ্ধ আকারে বিচ্ছিন্ন ছিল না। সলিড-স্টেট যন্ত্রে ক্যালসিয়াম ফ্লোরাইড, ক্যালসিয়াম টুংস্টেট ও স্ট্রন্টিয়াম মলিবডেট এবং উচ্চ তাপমাত্রায় কাজ করে এমন জ্বালানী কোষের স্ফটিক স্টেবিলাইজার হিসাবে টারবিয়াম ব্যবহার করা হয়। টারফেনল-ডি এর একটি উপাদান হিসাবে (একটি সংকর ধাতু যা চৌম্বক ক্ষেত্রের সংস্পর্শে অন্য যেকোন সংকর ধাতুর চেয়ে বেশি প্রসারিত ও সংকুচিত হয়) টারবিয়াম সঞ্চালক, নেভাল সোনার পদ্ধতি ও সেন্সরে ব্যবহার করা হয়।

বিশ্বের বেশিরভাগ টারবিয়াম সরবরাহে সবুজ ফসফর ব্যবহৃত হয়। টারবিয়াম অক্সাইড ফ্লুরোসেন্ট ল্যাম্প ও টেলিভিশন এবং মনিটরের ক্যাথোড-রে টিউব (সিআরটি)-এ থাকে। টারবিয়াম সবুজ ফসফরকে ত্রিবর্ণী আলোক প্রযুক্তি সরবরাহ করার জন্য দ্বি-যোজী ইউরোপিয়াম নীল ফসফর এবং ত্রি-যোজী ইউরোপিয়াম লাল ফসফরের সাথে মিলিত হয় একটি উচ্চ-দক্ষতার সাদা আলো যা অভ্যন্তরীণ আলোতে আদর্শ আলোকসজ্জার জন্য ব্যবহৃত হয়।

বৈশিষ্ট্য সম্পাদনা

ভৌত বৈশিষ্ট্য সম্পাদনা

টারবিয়াম হল একটি রূপালী-সাদা বিরল মৃত্তিকা ধাতু যা নমনীয়, ঘাতসহ ও ছুরি দিয়ে কাটার মতো যথেষ্ট নরম।[১] ল্যান্থেনাইড সিরিজের প্রথমার্ধে পূর্ববর্তী অধিক সক্রিয় ল্যান্থানাইডের তুলনায় এটি বাতাসে তুলনামূলকভাবে স্থিতিশীল।[২] টারবিয়াম দুটি স্ফটিক অ্যালোট্রোপে বিদ্যমান যার মধ্যে ১২৮৯° সে. রূপান্তর তাপমাত্রা রয়েছে।[১] একটি টারবিয়াম পরমাণুর ৬৫টি ইলেকট্রনকে ইলেকট্রন বিন্যাসে সাজালে হয় [Xe]4f 9 6s 2। এগারো 4f ও 6s ইলেকট্রন হল যোজ্যতা। পারমাণবিক আধানটি আরও আয়নীকণের অনুমতি দেওয়ার জন্য খুব বেশি হওয়ার আগে শুধুমাত্র তিনটি ইলেকট্রন অপসারণ করা যেতে পারে, তবে টারবিয়ামের ক্ষেত্রে অর্ধ-পূর্ণ [Xe]4f 7 বিন্যাসের স্থায়িত্ব ফ্লোরিন গ্যাসের মতো শক্তিশালী জারক পদার্থ যেমন চতুর্থ ইলেকট্রনের উপস্থিতিতে আরও আয়নীকরণের অনুমতি দেয়।[১]

টারবিয়াম (III) ধনাত্মক আয়ন উজ্জ্বলভাবে প্রতিপ্রভ, একটি উজ্জ্বল লেবু-হলুদ রঙে যা কমলা ও লাল রঙের অন্যান্য রেখার সাথে একত্রে একটি শক্তিশালী সবুজ নির্গমন রেখার ফলাফল। খনিজ ফ্লোরাইটের ইট্রোফ্লোরাইট বৈচিত্র্য টারবিয়াম অংশে এর ক্রিমি-হলুদ প্রতিপ্রভের জন্য দায়ী। টারবিয়াম সহজেই জারিত হয় এবং তাই বিশেষভাবে গবেষণার জন্য এর মৌলিক আকারে ব্যবহৃত হয়। একক টারবিয়াম পরমাণুকে ফুলারিন অণুতে ব্যাপ্ত করে বিচ্ছিন্ন করা হয়েছে।[৩]

২১৯ কে. এর নিচে তাপমাত্রায় টার্বিয়ামের একটি সরল ফেরোচৌম্বকীয় বিন্যাস রয়েছে। ২১৯ কে. এর উপরে, এটি একটি হেলিকাল ফেরোচৌম্বকীয় বিরোধী অবস্থায় পরিণত হয় যেখানে একটি নির্দিষ্ট মৌলিক সমতল স্তরের সমস্ত পারমাণবিক ভ্রামক সমান্তরাল ও সংলগ্ন ভ্রামকের একটি নির্দিষ্ট কোণে অভিমুখী হয়। এই অস্বাভাবিক ফেরোচৌম্বকত্ব বিরোধী ২৩০ কে.-এ একটি বিকৃত প্যারাচৌম্বকীয় অবস্থায় রূপান্তরিত হয়।[৪]

রাসায়নিক বৈশিষ্ট্য সম্পাদনা

টারবিয়াম ধাতু একটি তড়িৎধনাত্মক মৌল এবং বেশিরভাগ অ্যাসিড (যেমন সালফিউরিক অ্যাসিড), সমস্ত হ্যালোজেন ও এমনকি পানির উপস্থিতিতে জারিত হয়।[৫]

2 Tb (s) + 3 H2SO4 → 2 Tb3+ + 3 SO2−4 + 3 H2
2 Tb + 3 X2 → 2 TbX3 (X = F, Cl, Br, I)
2 Tb (s) + 6 H2O → 2 Tb(OH)3 + 3 H2

টারবিয়াম সহজেই বায়ুতে জারিত হয়ে একটি মিশ্র টারবিয়াম (III,IV) অক্সাইড গঠন করে:[৫]

8 Tb + 7 O2 → 2 Tb4O7

টার্বিয়ামের সবচেয়ে সাধারণ জারণ অবস্থা হল +৩ (ত্রিযোজী), যেমন TbCl
3
। কঠিন অবস্থায় চতুর্যোজী টারবিয়াম TbO2TbF4 এর মতো যৌগগুলিতেও পরিচিত।[৬] দ্রবণে টারবিয়াম সাধারণত ত্রিযোজী শ্রেণী গঠন করে, কিন্তু অত্যন্ত মৌলিক জলীয় অবস্থায় ওজোন সহ চতুর্যোজী অবস্থায় জারিত হতে পারে।[৭]

টারবিয়ামের সহযোজন ও অর্গানমেটালিক রসায়ন অন্যান্য ল্যান্থানাইডের মতো। জলীয় অবস্থায় টারবিয়াম নয়টি পানির অণু দ্বারা সহযোজন হতে পারে, যা একটি ত্রিকোণীয় প্রিজম্যাটিক আণবিক জ্যামিতিতে সাজানো হয়। নিম্ন সহযোজন সংখ্যাসহ টারবিয়ামের যৌগিক সাধারণত বিআইএস (ট্রাইমিথাইল-সিলাইলামাইড) এর মতো ভারী লিগ্যান্ডের সাথেও জ্ঞাত, যা তিন-তুল্য Tb[N(SiMe3)2]3 যৌগিক গঠন করে।

অধিকাংশ সহযোজন ও অর্গানোমেটালিক যৌগিকে ত্রিযোজী জারণ অবস্থায় টার্বিয়াম থাকে। দ্বিযোজী (Tb 2+) যৌগিকে সাধারণত বৃহৎ সাইক্লোপেন্টাডিয়ানাইল-ধরনের লিগ্যান্ড সাথে জ্ঞাত।[৮][৯][১০] এর চতুর্যোজী অবস্থায় টারবিয়াম ধারণকারী কয়েকটি সহযোজন যৌগও জ্ঞাত।[১১][১২][১৩]

জারণ অবস্থা সম্পাদনা

বেশিরভাগ বিরল মৃত্তিকা মৌলল্যান্থানাইডের মতো টারবিয়াকে সাধারণত +৩ জারণ অবস্থায় পাওয়া যায়। সিরিয়ামপ্রাসিওডিয়ামিয়ামের মতো টারবিয়ামও একটি +৪ জারণ অবস্থা তৈরি করতে পারে, যদিও এটি পানিতে অস্থিতিশীল।[১৪] যাইহোক, টারবিয়ামের জন্য ০, +১, এবং +২ জারণ অবস্থায়ও পাওয়া সম্ভব।

যৌগ সম্পাদনা

টারবিয়াম সালফেট, Tb2(SO4)3 (উপরে), অতিবেগুনী রশ্মির নিচে প্রতিপ্রভ সবুজ (নীচে)

উচ্চ তাপমাত্রায় টারবিয়াম নাইট্রোজেন, কার্বন, সালফার, ফসফরাস, বোরন, সেলেনিয়াম, সিলিকন ও আর্সেনিকের সাথে একত্রিত হয়ে বিভিন্ন যুগ্ম যৌগ তৈরি করে যেমন TbH2, TbH3, TbB2, Tb2S3, TbSe, TbTeTbN[১৫] এই সকল যৌগে Tb বেশিরভাগ জারণ অবস্থা +৩ এবং কখনও কখনও +২ প্রদর্শন করে। ট্যানটালাম পাত্রে ধাতব Tb এর উপস্থিতিতে Tb(III) হ্যালাইড দাহ্য করে Tb(II) হ্যালাইড প্রাপ্ত হয়। টারবিয়াম এছাড়াও সেস্কুইক্লোরাইড (Tb2Cl3) গঠন করে, যা ৮০০° সে.-এ দাহ্য করে TbCl-এ আরও কমিয়ে আনা যায়। এই টার্বিয়াম (I) ক্লোরাইড স্তরযুক্ত গ্রাফাইটের মতো গঠন সহ প্লেটলেট গঠন করে।[১৬]

টারবিয়াম(IV) ফ্লোরাইড হল একমাত্র হ্যালাইড যা চতুর্যোজী টারবিয়াম গঠন করতে পারে এবং এর শক্তিশালী জারিত বৈশিষ্ট্য রয়েছে। কোবাল্ট(III) ফ্লোরাইড বা সেরিয়াম(IV) ফ্লোরাইড থেকে নির্গত ফ্লোরাইড বাষ্পের মিশ্রণের পরিবর্তে এটি একটি শক্তিশালী ফ্লোরিনেটিং এজেন্ট যা উত্তপ্ত হলে অপেক্ষাকৃত বিশুদ্ধ পারমাণবিক ফ্লোরিন নির্গত করে। [১৭] এটি ৩২০°সে.-এ ফ্লোরিন গ্যাসের সাথে টারবিয়াম(III) ক্লোরাইড বা টারবিয়াম(III) ফ্লোরাইডের সাথে বিক্রিয়া করে পাওয়া যেতে পারে:[১৮]

2 TbF 3 + F 2 → 2 TbF 4

যখন TbF4 ও CsF একটি স্টোকিওমেট্রিক অনুপাতে মিশ্রিত হয়, তখন একটি ফ্লোরিন গ্যাস বায়ুমণ্ডলে CsTbF5 প্রাপ্ত হয়। এটি স্পেস গ্রুপ Cmca সহ [TbF 8] 4− ও 11-সহযোজিত Cs+ এর সমন্বয়ে গঠিত একটি অর্থোরম্বিক স্ফটিক।[১৯] যৌগ BaTbF6 একই পদ্ধতিতে প্রস্তুত করা যেতে পারে। এটি স্পেস গ্রুপ Cmma নিয়ে একটি অর্থোরম্বিক স্ফটিক। এছাড়াও যৌগ [TbF 8] 4− বিদ্যমান।[২০]

অন্যান্য যৌগ অন্তর্ভুক্ত

আইসোটোপ সম্পাদনা

প্রাকৃতিকভাবে সৃষ্ট টারবিয়াম এর একমাত্র স্থিতিশীল আইসোটোপ টারবিয়াম-১৫৯ দ্বারা গঠিত; মৌলটি তাই মনোনিউক্লিডিক ও মনোআইসোটোপিক। ছত্রিশটি রেডিওআইসোটোপকে চিহ্নিত করা হয়েছে, যার মধ্যে সবচেয়ে ভারী টার্বিয়াম-১৭১ (পারমাণবিক ভর 170.95330(86) u) এবং সবচেয়ে হালকা টারবিয়াম-১৩৫ (সঠিক ভর অজানা)।[২১] টারবিয়ামের সবচেয়ে স্থিতিশীল সিন্থেটিক রেডিওআইসোটোপ হল টারবিয়াম-১৫৮, যার অর্ধায়ু ১৮০ বছর ও টারবিয়াম-১৫৭, যার অর্ধায়ু ৭১ বছর। বাকি সব তেজস্ক্রিয় আইসোটোপের অর্ধেক জীবন থাকে যা এক বছরের এক চতুর্থাংশেরও কম এবং এর বেশিরভাগেরই অর্ধ-জীবন থাকে যা অর্ধেক মিনিটেরও কম।[২১] প্রাথমিক ক্ষয় ধরনের পূর্বে সর্বাধিক প্রচুর স্থিতিশীল আইসোটোপ 159Tb হল ইলেকট্রন ক্যাপচার যার ফলে গ্যাডোলিনিয়াম আইসোটোপ তৈরি হয় এবং পরে প্রাথমিক ক্ষয় হল বিটা ঋণাত্মক ক্ষয় যার ফলে ডিসপ্রোজিয়াম আইসোটোপ হয়।[২১]

মৌলটির ১৪১-১৫৪, ১৫৬ এবং ১৫৮ (প্রতিটি ভর সংখ্যা শুধুমাত্র একটি আইসোমারের সাথে মিলে না) সহ ২৭টি পারমাণবিক আইসোমার রয়েছে। এদের মধ্যে সবচেয়ে স্থিতিশীল হল অর্ধ-জীবন ২৪.৪ ঘন্টা বিশিষ্ট টারবিয়াম-156m এবং অর্ধ-জীবন ২২.৭ ঘন্টা বিশিষ্ট টার্বিয়াম-156m2; এটি ভর সংখ্যা ১৫৫-১৬১ ছাড়া তেজস্ক্রিয় টারবিয়াম আইসোটোপগুলির বেশিরভাগ ক্ষেত্র অবস্থার অর্ধায়ুর চেয়ে দীর্ঘ।[২১]

ইতিহাস সম্পাদনা

 
কার্ল গুস্তাফ মোসান্ডার, একজন বিজ্ঞানী যিনি টারবিয়াম, ল্যান্থানাম ও এর্বিয়াম আবিষ্কার করেছিলেন।

সুইডিশ রসায়নবিদ কার্ল গুস্তাফ মোসান্ডার ১৮৪৩ সালে টারবিয়াম আবিষ্কার করেন। তিনি এটি ইট্রিয়াম অক্সাইডে অবিশুদ্ধ হিসাবে সনাক্ত করেছিলেন। সুইডেনের ইটারবি গ্রামের নামানুসারে ইট্রিয়ামের নামকরণ করা হয়েছে। আয়ন বিনিময় কৌশলের উদ্ভাবনের আগ পর্যন্ত টারবিয়াম বিশুদ্ধ আকারে বিচ্ছিন্ন ছিল না।[২২][২৩][২৪]:৭০১[২৫][২২][২৬][২৭]

মোসান্ডার প্রথমে ইট্রিয়াকে তিনটি ভগ্নাংশে বিভক্ত করেছিলেন, যার সবগুলো আকরিকের জন্য নামকরণ করা হয়েছিল: ইট্রিয়া, এরবিয়া ও টারবিয়া। "টারবিয়া" মূলত সেই ভগ্নাংশ ছিল যেটিতে গোলাপী রঙ ছিল, যে মৌলটির কারণে এখন এর্বিয়াম নামে পরিচিত। "এরবিয়া" (যা এখন টারবিয়াম নামে পরিচিত) মূলত ভগ্নাংশ ছিল যা সাধারণত দ্রবণে বর্ণহীন ছিল। এই মৌলটির অদ্রবণীয় অক্সাইডটি বাদামী রঙের বলে উল্লেখ করা হয়েছিল।

পরবর্তীতে শ্রমিকদের ক্ষুদ্র বর্ণহীন "এরবিয়া" পর্যবেক্ষণ করতে অসুবিধা হয়েছিল, কিন্তু দ্রবণীয় গোলাপী ভগ্নাংশটি লক্ষ্য করা অসম্ভব ছিল। এরবিয়ার অস্তিত্ব ছিল কিনা তা নিয়ে তর্ক-বিতর্ক চলতে থাকে। বিভ্রান্তিতে আসল নামগুলি বিপরীত হয়ে যায় ও নামের বিনিময় প্রলম্বিত হয়ে যায়, অতএব গোলাপী ভগ্নাংশটি শেষ পর্যন্ত এর্বিয়ামযুক্ত দ্রবণে উল্লেখ করা হয় (যা দ্রবণে গোলাপী)। এটা এখন মনে করা হয় যে যে ইট্রিয়া থেকে সেরিয়া অপসারণের জন্য দ্বি-সোডিয়াম বা পটাসিয়াম সালফেট ব্যবহার করতে গিয়ে কর্মীরা অসাবধানতাবশত টারবিয়ামকে সেরিয়াযুক্ত অধঃক্ষেপণে হারিয়ে ফেলে। এখন যা টারবিয়াম নামে পরিচিত তা আসল ইট্রিয়ার মাত্র ১% ছিল, তবে এটি ইট্রিয়াম অক্সাইডে হলুদ রঙ দেওয়ার জন্য যথেষ্ট ছিল। এইভাবে, টারবিয়াম ছিল এটির মূল ভগ্নাংশের একটি গৌণ উপাদান, যেখানে এটি এর নিকটবর্তী সন্নিহিত গ্যাডোলিনিয়ামডিসপ্রোসিয়াম দ্বারা প্রভাবিত ছিল।

তারপরে, যখনই এই মিশ্রণটি ছাড়া অন্য বিরল মৃত্তিকা মৌল থেকে জ্বালানো হয়, তখনই এই ভগ্নাংশটি যে বাদামী অক্সাইড দিয়েছে তা টারবিয়াম নাম ধরে রেখেছে, শেষ অবধি টারবিয়ামের বাদামী অক্সাইড বিশুদ্ধ আকারে প্রাপ্ত হয়েছিল। ঊনবিংশ শতকের তদন্তকারীদের উজ্জ্বল হলুদ বা সবুজ Tb(III) প্রতিপ্রভা পর্যবেক্ষণ করার জন্য ইউভি (অতি বেগুনি) প্রতিপ্রভা প্রযুক্তির সুবিধা ছিল না যা কঠিন মিশ্রণ বা দ্রবণে টারবিয়ামকে সনাক্ত করা সহজ করে তুলত।[২৩]

ঘটনা সম্পাদনা

 
জেনোটাইম

মোনাজাইট ((Ce,La,Th,Nd,Y)PO4 ০.০৩% পর্যন্ত টারবিয়াম সহ), জেনোটাইম (YPO4) ও ইউক্সেনাইট ((Y,Ca,Er,La,Ce,U,Th)(Nb,Ta,Ti)2O6 ১% বা এর বেশি টারবিয়াম সহ) সহ অনেক খনিজ পদার্থে অন্যান্য বিরল মৃত্তিকা মৌলের সাথে টারবিয়াম রয়েছে। টার্বিয়ামের ভূত্বকের প্রাচুর্য ১.২ ​​মিলিগ্রাম/কেজি হিসাবে অনুমান করা হয়।[১৫] এখনও টারবিয়াম-প্রধান খনিজ পাওয়া যায়নি।[২৮]

বর্তমানে, টারবিয়ামের সবচেয়ে ধনী বাণিজ্যিক উৎস হল দক্ষিণ চীনের আয়ন-শোষণ কাদামাটি; ওজন অনুযায়ী প্রায় দুই-তৃতীয়াংশ ইট্রিয়াম অক্সাইডের ঘনত্বে প্রায় ১% টারবিয়া থাকে। বাস্টনাসাইট এবং মোনাজাইটে অল্প পরিমাণে টারবিয়াম পাওয়া যায়; যখন এগুলোকে সামরিয়াম-ইউরোপিয়াম-গ্যাডোলিনিয়াম ঘনত্ব হিসাবে দ্রাবক নিষ্কাশনের মাধ্যমে মূল্যবান ভারী ল্যান্থানাইড পুনরুদ্ধার করার জন্য প্রক্রিয়াজাত করা হয় তখন টারবিয়াম সেখানে পুনঃপ্রাপ্ত হয়। আয়ন-শোষণ কাদামাটির সাপেক্ষে প্রচুর পরিমাণে বাস্টনাসাইট প্রক্রিয়াজাত হওয়ার কারণে বিশ্বের টারবিয়াম সরবরাহের একটি উল্লেখযোগ্য অনুপাত বাস্টনাসাইট থেকে আসে।[১]

২০১৮ সালে, জাপানের মিনামিতোরি দ্বীপের উপকূলে একটি সমৃদ্ধ টারবিয়াম সরবরাহ আবিষ্কৃত হয়েছিল এবং উল্লিখিত সরবরাহটি "৪২০ বছরের জন্য বিশ্বব্যাপী চাহিদা মেটাতে যথেষ্ট"।[২৯]

উৎপাদন সম্পাদনা

চূর্ণ টারবিয়াম-যুক্ত খনিজগুলিকে বিরল মৃত্তিকার পানিতে দ্রবণীয় সালফেট তৈরি করতে গরম ঘনীভূত সালফিউরিক অ্যাসিড দিয়ে প্রভাবিত করা হয়। অম্লীয় পরিস্রুত তরল পদার্থকে কস্টিক সোডা দিয়ে পিএইচ ৩-৪ -এ আংশিকভাবে নিরপেক্ষ করা হয়। থোরিয়াম হাইড্রোক্সাইড হিসাবে দ্রবণ থেকে বের হয়ে যায় ও অপসারণ করা হয়। এরপরে বিরল মৃত্তিকা মৌলকে সেগুলির অদ্রবণীয় অক্সালেটে রূপান্তর করতে দ্রবণটিকে অ্যামোনিয়াম অক্সালেট দিয়ে প্রভাবিত করা হয়। অক্সালেট উত্তপ্ত হয়ে অক্সাইডে পচে যায়। অক্সাইড নাইট্রিক অ্যাসিডে দ্রবীভূত হয় যা প্রধান উপাদানগুলির মধ্যে একটি সেরিয়ামকে বর্জন করে যার অক্সাইড HNO3-এ অদ্রবণীয়। টারবিয়ামকে স্ফটিককরণের মাধ্যমে অ্যামোনিয়াম নাইট্রেট দিয়ে দ্বিগুণ লবণ হিসাবে আলাদা করা হয়।[১৫]

বিরল-মৃত্তিকা লবণের দ্রবণ থেকে টারবিয়াম লবণের জন্য সবচেয়ে কার্যকর পৃথকীকরণ রুটিন হল আয়ন বিনিময়। এই প্রক্রিয়ায়, রজনে উপস্থিত হাইড্রোজেন, অ্যামোনিয়াম বা কিউপ্রিক আয়নগুলির সাথে বিনিময়ের মাধ্যমে বিরল-মৃত্তিকা আয়নগুলি উপযুক্ত আয়ন-বিনিময় রজনে শোষিত হয়। বিরল মৃত্তিকা আয়নগুলি তারপর বেছে বেছে উপযুক্ত জটিল এজেন্ট দিয়ে ধুয়ে ফেলা হয়। অন্যান্য বিরল মৃত্তিকার মতো ক্যালসিয়াম ধাতুর সাথে অনার্দ্র ক্লোরাইড বা ফ্লোরাইড হ্রাস করে টারবিয়াম ধাতু উৎপাদিত হয়। শূন্যস্থান পুনঃগলন, পাতন, সংমিশ্রণ গঠন বা বলয় গলানোর মাধ্যমে ক্যালসিয়াম ও ট্যানটালাম অমেধ্য অপসারণ করা যেতে পারে।[১৫]

প্রয়োগ সম্পাদনা

টারবিয়াম ক্যালসিয়াম ফ্লোরাইড, ক্যালসিয়াম টুংস্টেট ও স্ট্রনশিয়াম মলিবডেটে ডোপান্ট হিসাবে ব্যবহৃত হয়, এমন পদার্থ যা সলিড-স্টেট ডিভাইসে ব্যবহৃত হয় ও জ্বালানী কোষের স্ফটিক স্টেবিলাইজার হিসাবে যা উচ্চ তাপমাত্রায় কাজ করে।[১]

টারবিয়াম খাদ ও ইলেকট্রনিক ডিভাইস উৎপাদনেও ব্যবহৃত হয়। টেরফেনল-ডি- এর একটি উপাদান হিসাবে টার্বিয়াম সঞ্চালক, নেভাল সোনার পদ্ধতি, সেন্সর, সাউন্ডবাগ ডিভাইস (এর প্রথম বাণিজ্যিক প্রয়োগ) ও অন্যান্য চৌম্বকযন্ত্রে ব্যবহার করা হয়। টেরফেনল-ডি একটি টারবিয়াম খাদ যা চৌম্বক ক্ষেত্রের উপস্থিতিতে প্রসারিত বা সংকুচিত হয়। এটিতে যে কোনো সংকর ধাতুর সর্বোচ্চ চুম্বকীয় বিকৃতি রয়েছে।[৩০]

টারবিয়াম অক্সাইড প্রতিপ্রভ বাতি ও রঙিন টিভি টিউবে সবুজ ফসফরে ব্যবহার করা হয়। সলিড স্টেট ডিভাইসে সোডিয়াম টারবিয়াম বোরেট ব্যবহার করা হয়। উজ্জ্বল প্রতিপ্রভা টারবিয়ামকে জৈব রসায়নে একটি অনুসন্ধান হিসাবে ব্যবহার করার অনুমতি দেয়, যেখানে এটি এর আচরণে ক্যালসিয়ামের সাথে কিছুটা সাদৃশ্যপূর্ণ। টারবিয়াম "সবুজ" ফসফর (যা একটি উজ্জ্বল লেবু-হলুদ প্রতিপ্রভ করে) ত্রিবর্ণী আলো প্রযুক্তি প্রদান করতে দ্বি-যোজী ইউরোপিয়াম নীল ফসফর ও ত্রি-যোজী ইউরোপিয়াম লাল ফসফরসের সাথে মিলিত হয় যা এখন পর্যন্ত বিশ্বের টারবিয়াম সরবরাহের সবচেয়ে বড় ভোক্তা। ত্রিবর্ণী আলো ইনক্যান্ডিসেন্ট আলোক বাতির চেয়ে প্রদত্ত পরিমাণ বৈদ্যুতিক শক্তির জন্য অনেক বেশি আলোর আউটপুট সরবরাহ করে।[১]

টের্বিয়াম এন্ডোস্পোর শনাক্ত করতেও ব্যবহৃত হয়, কারণ এটি ফটোলুমিনেসেন্সের উপর ভিত্তি করে ডিপিকোলিনিক অ্যাসিডের বিশুদ্ধতা পরীক্ষা হিসেবে কাজ করে।[৩১]

সতর্কতা সম্পাদনা

টারবিয়ামের কোনও পরিচিত জৈবিক ভূমিকা নেই।[১] অন্যান্য ল্যান্থানাইডের মতো টারবিয়াম যৌগগুলি কম থেকে মাঝারি বিষাক্ততার, যদিও এগুলির বিষাক্ততা বিশদভাবে তদন্ত করা হয়নি। ইঁদুরের উপর টারবিয়াম ক্লোরাইডের বিষাক্ততার পরীক্ষার উপর ভিত্তি করে এটি ধারণা করা হয় যে ৫০০ গ্রাম বা এরও বেশি খাওয়া একজন মানুষের জন্য মারাত্মক হতে পারে (তুলনা: ১০০ কেজি মানুষের জন্য ৩০০ গ্রাম সাধারণ টেবিল লবণের প্রাণঘাতী ডোজ)। অদ্রবণীয় লবণ অ-বিষাক্ত।[৩২]

তথ্যসূত্র সম্পাদনা

  1. Hammond, C. R. (২০০৫)। "The Elements"। CRC Handbook of Chemistry and Physics (86th সংস্করণ)। CRC Press। আইএসবিএন 978-0-8493-0486-6 
  2. "Rare-Earth Metal Long Term Air Exposure Test"। সংগ্রহের তারিখ ২০০৯-০৫-০৫ 
  3. Shimada, T.; Ohno, Y. (২০০৪)। "Transport properties of C78, C90 and Dy@C82 fullerenes – nanopeapods by field effect transistors": 1089–1092। ডিওআই:10.1016/j.physe.2003.11.197 
  4. Jackson, M. (২০০০)। "Magnetism of Rare Earth" (পিডিএফ): 1। 
  5. "Chemical reactions of Terbium"। Webelements। সংগ্রহের তারিখ ২০০৯-০৬-০৬ 
  6. Gruen, D. M.; Koehler, W. C. (এপ্রিল ১৯৫১)। "Higher Oxides of the Lanthanide Elements: Terbium Dioxide": 1475–1479। ডিওআই:10.1021/ja01148a020 
  7. Hobart, D. E.; Samhoun, K. (১৯৮০)। "Stabilization of Praseodymium(IV) and Terbium(IV) in Aqueous Carbonate Solution": 321–328। ডিওআই:10.1016/0020-1650(80)80069-9 
  8. Jenkins, T. F.; Woen, D. H (২০১৮)। "Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-cryptand)][(C5Me4H)3Ln] Complexes": 3863–3873। ডিওআই:10.1021/acs.organomet.8b00557 
  9. Macdonald, M. R.; Bates, J. E. (২০১৩)। "Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+": 9857–9868। ডিওআই:10.1021/ja403753jপিএমআইডি 23697603 
  10. Gould, C. A.; McClain, K. R. (২০১৯-০৮-২১)। "Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II)": 12967–12973। আইএসএসএন 0002-7863ডিওআই:10.1021/jacs.9b05816পিএমআইডি 31375028 
  11. Palumbo, C. T.; Zivkovic, I. (২০১৯)। "Molecular Complex of Tb in the +4 Oxidation State" (পিডিএফ): 9827–9831। ডিওআই:10.1021/jacs.9b05337পিএমআইডি 31194529 [স্থায়ীভাবে অকার্যকর সংযোগ]
  12. Rice, N. T.; Popov, I. A. (২০১৯-০৮-২১)। "Design, Isolation, and Spectroscopic Analysis of a Tetravalent Terbium Complex": 13222–13233। আইএসএসএন 0002-7863ওএসটিআই 1558225ডিওআই:10.1021/jacs.9b06622পিএমআইডি 31352780 
  13. Willauer, A. R.; Palumbo, C. T. (২০২০)। "Stabilization of the Oxidation State + IV in Siloxide-Supported Terbium Compounds" (পিডিএফ): 3549–3553। ডিওআই:10.1002/anie.201914733পিএমআইডি 31840371 
  14. Greenwood, N. N.; Earnshaw, A. (১৯৯৭)। Chemistry of the Elements (2nd সংস্করণ)। Butterworth-Heinemannআইএসবিএন 0080379419 
  15. Patnaik, Pradyot (২০০৩)। Handbook of Inorganic Chemical Compounds। McGraw-Hill। পৃষ্ঠা 920–921। আইএসবিএন 978-0-07-049439-8। সংগ্রহের তারিখ ২০০৯-০৬-০৬ 
  16. Cotton (২০০৭)। Advanced inorganic chemistry (6th সংস্করণ)। Wiley-India। পৃষ্ঠা 1128। আইএসবিএন 978-81-265-1338-3 
  17. Rau, J. V.; Chilingarov, N. S. (আগস্ট ২০০১)। "Transition and rare earth metal fluorides as thermal sources of atomic and molecular fluorine": Pr3–109–Pr3–113। ডিওআই:10.1051/jp4:2001314 
  18. Synthesis of Lanthanide and Actinide Compounds.। Springer Science & Business Media। ১৯৯১। পৃষ্ঠা 60। আইএসবিএন 978-0-7923-1018-1 
  19. Gaumet, V.; Avignant, D. (১৯৯৭)। "Caesium Pentafluoroterbate, CsTbF5": 1176–1178। ডিওআই:10.1107/S0108270197005556 
  20. Largeau, E.; El-Ghozzi, M. (১৯৯৭)। "β-BaTbF6": 530–532। ডিওআই:10.1107/S0108270196014527 
  21. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (২০১৭)। "The NUBASE2016 evaluation of nuclear properties" (পিডিএফ)Chinese Physics C41 (3): 030001। ডিওআই:10.1088/1674-1137/41/3/030001বিবকোড:2017ChPhC..41c0001A 
  22. Marshall, James L.; Marshall, Virginia R. (অক্টোবর ৩১, ২০১৪)। "Northern Scandinavia: An Elemental Treasure Trove"। Science history : a traveler's guide। ACS Symposium Series। পৃষ্ঠা 209–257। আইএসবিএন 9780841230200ডিওআই:10.1021/bk-2014-1179.ch011 
  23. Gupta, C. K.; Krishnamurthy, Nagaiyar (২০০৪)। Extractive metallurgy of rare earths। CRC Press। পৃষ্ঠা 5। আইএসবিএন 978-0-415-33340-5 
  24. Weeks, Mary Elvira (১৯৫৬)। The discovery of the elements (6th সংস্করণ)। Journal of Chemical Education। 
  25. Weeks, Mary Elvira (১৯৩২)। "The discovery of the elements: XVI. The rare earth elements": 1751–1773। ডিওআই:10.1021/ed009p1751 
  26. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (২০১৫)। "Rediscovery of the elements: The Rare Earths–The Beginnings" (পিডিএফ): 41–45। সংগ্রহের তারিখ ৩০ ডিসেম্বর ২০১৯ 
  27. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (২০১৫)। "Rediscovery of the elements: The Rare Earths–The Confusing Years" (পিডিএফ): 72–77। সংগ্রহের তারিখ ৩০ ডিসেম্বর ২০১৯ 
  28. Hudson Institute of Mineralogy (১৯৯৩–২০১৮)। "Mindat.org"www.mindat.org। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৮ 
  29. Insider, Jeremy Berke, Business। "Japan Discovered a Rare-Earth Mineral Deposit This Year That Can Supply The World For Centuries"ScienceAlert 
  30. Rodriguez, C; Rodriguez, M. (২০০৯)। "New elastomer–Terfenol-D magnetostrictive composites": 251। ডিওআই:10.1016/j.sna.2008.11.026 
  31. Rosen, D. L.; Sharpless, C. (১৯৯৭)। "Bacterial Spore Detection and Determination by Use of Terbium Dipicolinate Photoluminescence": 1082–1085। ডিওআই:10.1021/ac960939w 
  32. Emsley, John (২০০১)। Nature's Building Blocks। Oxford University Press। পৃষ্ঠা 129–132। আইএসবিএন 978-0-19-850341-5 Emsley, John (2001).

বহিঃসংযোগ সম্পাদনা