ডিসপ্রোসিয়াম

(ডিসপ্রোজিয়াম থেকে পুনর্নির্দেশিত)

ডিসপ্রোসিয়াম একটি রাসায়নিক মৌল যার প্রতীক Dyপারমাণবিক সংখ্যা 66। এটি ল্যান্থানাইড সিরিজের একটি বিরল মৃত্তিকা মৌল যার ধাতব রূপালী আভা বিদ্যমান। ডিসপ্রোসিয়াম প্রকৃতিতে মুক্ত উপাদান হিসাবে পাওয়া যায় না, যদিও অন্যান্য ল্যান্থানাইডের মতো এটি বিভিন্ন খনিজ পদার্থে পাওয়া যায়, যেমন জেনোটাইম। প্রাকৃতিকভাবে প্রাপ্ত ডিসপ্রোসিয়াম সাতটি আইসোটোপ দ্বারা গঠিত, যার মধ্যে 164 Dyসর্বাধিক সুপ্রতুল (most abundant)।

ডিসপ্রোসিয়াম সর্ব প্রথম ১৮৮৬ সালে পল এমাইল লেকোক ডি বোইসবউড্রান কর্তৃক শনাক্ত করা হয়েছিল, কিন্তু ১৯৫০-এর দশকে আয়ন-বিনিময় কৌশলের বিকাশ না হওয়া পর্যন্ত বিশুদ্ধ আকারে এটিকে পৃথক করা যায়নি। ডিসপ্রোসিয়ামের অপেক্ষাকৃত কম প্রায়োগিক দিক (applications) রয়েছে, (এটি সেসব ক্ষেত্রে ব্যবহৃত হয়) যেসব ক্ষেত্রে এটি অন্যান্য রাসায়নিক উপাদানের বিকল্প হতে পারে না। এটি পারমাণবিক চুল্লিতে এর উচ্চ তাপীয় নিউট্রন শোষণ ক্রস-সেকশনের জন্য কন্ট্রোল রড তৈরিতে, এর উচ্চ চৌম্বকীয় সংবেদনশীলতার জন্য (χv৫.৪৪×১০−৩) ডেটা-স্টোরেজ অ্যাপ্লিকেশনগুলিতে এবং টেরফেনল-ডি [একটি চৌম্বকীয়(magnetostrictive) পদার্থ] এর একটি উপাদান হিসাবে ব্যবহৃত হয়। দ্রবণীয় ডিসপ্রোসিয়াম লবণ অল্প বিষাক্ত, অন্যদিকে অদ্রবণীয় লবণ অ-বিষাক্ত বলে মনে করা হয়।

বৈশিষ্ট্যাবলী সম্পাদনা

ভৌত বৈশিষ্ট্যাবলী সম্পাদনা

 
ডিসপ্রোসিয়াম নমুনা

ডিসপ্রোসিয়াম একটি বিরল মৃত্তিকা মৌল এবং এর রয়েছে ধাতব, উজ্জ্বল রূপালী দীপ্তি। এটি বেশ নরম ও (এজন্য) অতিরিক্ত তাপ (overheating) এড়ানো হলে স্পার্কিং ছাড়াই এটিকে যন্ত্রপোযোগী (machined) করা যেতে পারে। ডিসপ্রোসিয়ামের ভৌত বৈশিষ্ট্যগুলি এতে সামান্য পরিমাণ অবিশুদ্ধতার (ভেজাল) উপস্থিতি দ্বারা ব্যাপকভাবে প্রভাবিত হতে পারে।[১]

রাসায়নিক মৌলগুলোর মধ্যে ডিসপ্রোসিয়াম ও হোলমিয়াম এর সর্বোচ্চ চৌম্বকীয় শক্তি রয়েছে,[২] বিশেষত নিম্ন তাপমাত্রায়।[৩] ডিসপ্রোসিয়ামের ৮৫ K (−১৮৮.২ °সে) এর কম তাপমাত্রায় একটি সহজ ফেরোম্যাগনেটিক অর্ডার রয়েছে। ৮৫ K (−১৮৮.২ °সে) এর উপরে, এটি একটি হেলিকাল অ্যান্টিফেরোম্যাগনেটিক অবস্থা প্রাপ্ত হয় যখন একটি নির্দিষ্ট আনুভূমিক সমতল স্তরে অবস্থিত এটির সমস্ত পারমাণবিক ভ্রামকগুলো (atomic moments) সমান্তরাল হয় এবং এর সন্নিহিত স্তরগুলির ভ্রামকগুলোর সাথে একটি নির্দিষ্ট কোণ অভিমুখী হয়। এই অস্বাভাবিক অ্যান্টিফেরোম্যাগনেটিজম (unusual antiferromagnetism) ১৭৯ K (−৯৪ °সে) তাপমাত্রায় একটি বিশৃঙ্খল (প্যারাম্যাগনেটিক) অবস্থায় রূপান্তরিত হয়।[৪]

রাসায়নিক বৈশিষ্ট্যাবলী সম্পাদনা

ডিসপ্রোসিয়াম ধাতু শুষ্ক বাতাসে তার দীপ্তি (ধাতব আভা) বজায় রাখে, তবে আর্দ্র বাতাসে ধীরে ধীরে এটি তার দীপ্তি হারাতে থাকবে এবং ডিসপ্রোসিয়াম(III) অক্সাইড তৈরি করার মাধ্যমে সহজেই পুড়ে যাবে:

4 Dy + 3 O2 → 2 Dy 2O3

ডিসপ্রোসিয়াম বেশ তড়িৎ ধনাত্মক (electropositive) এবং ঠাণ্ডা পানির সাথে ধীরে (এবং গরম পানির সাথে বেশ দ্রুত) বিক্রিয়া করে ডিসপ্রোসিয়াম হাইড্রোক্সাইড তৈরি করে:

2 Dy (s) + 6 H 2O (l) → 2 Dy(OH)3 (aq) + 3 H2 (g)

ডিসপ্রোসিয়াম হাইড্রোক্সাইড উচ্চ তাপমাত্রায় DyO(OH) গঠনের জন্য ভেঙ্গে যায়, যেটি আবার ভেঙ্গে ডিসপ্রোসিয়াম (III) অক্সাইডে পরিণত হয়। [৫]

ডিসপ্রোসিয়াম ধাতু ২০০°সে. তাপমাত্রার উপরে সমস্ত হ্যালোজেনের সাথে তীব্রভাবে বিক্রিয়া করে :[তথ্যসূত্র প্রয়োজন]

2 Dy (s) + 3 F2 (g) → 2 DyF3 (s) [সবুজ]
2 Dy (s) + 3 Cl2 (g) → 2 DyCl3 (s) [সাদা]
2 Dy (s) + 3 Br2 (l) → 2 DyBr3 (s) [সাদা]
2 Dy (s) + 3 I2 (g) → 2 DyI3 (s) [সবুজ]

ডিসপ্রোসিয়াম লঘু সালফিউরিক অ্যাসিডে সহজেই দ্রবীভূত হয়ে হলুদ Dy(III) আয়ন সমন্বিত দ্রবণ তৈরি করে, যা একটি জটিল যৌগ, [Dy(OH2) 9]3+ হিসাবে বিরাজ করে:[৬]

2 Dy (s) + 3 H2SO4 (aq) → 2 Dy3+ (aq) + 3 SO2−
4
(aq) + 3 H2 (g)

(বিক্রিয়ার) সর্বশেষ যৌগ, ডিসপ্রোসিয়াম(III) সালফেট, লক্ষণীয়ভাবে প্যারাম্যাগনেটিক।

যৌগসমূহ সম্পাদনা

 
ডিসপ্রোসিয়াম সালফেট, Dy2(SO 4)3

ডিসপ্রোসিয়াম হ্যালাইডগুলোর, যেমন DyF3 ও DyBr3, হলুদ রঙ ধারণ করার প্রতি ঝোঁক আছে। ডিসপ্রোসিয়াম অক্সাইড ডিসপ্রোসিয়া নামেও পরিচিত, আর এটি একটি সাদা পাউডার যা আয়রন অক্সাইডের চেয়েও বেশি চৌম্বকীয়[৩]

ডিসপ্রোসিয়াম উচ্চ তাপমাত্রায় বিভিন্ন অ-ধাতুর সাথে বিক্রিয়ার মাধ্যমে বাইনারি যৌগ গঠন করে। আর, এসব (বাইনারি) যৌগের বিভিন্ন সংযুক্তি এবং জারণ অবস্থা যেমন, +৩ এবং কখনো কখনো +২ বিদ্যমান, উদাহরণস্বরুপ DyN, DyP, DyH2 ও DyH3 ; DyS, DyS2, Dy2S3 ও Dy5 S7; DyB2, DyB4, DyB6 ও DyB12, এছাড়াও আছে Dy3C ও Dy2C3[৭]

ডিসপ্রোসিয়াম কার্বনেট, Dy2 (CO3)3 ও ডিসপ্রোসিয়াম সালফেট, Dy2 (SO4)3 অনুরূপ বিক্রিয়ার ফলে তৈরি হয়।[৮] বেশিরভাগ ডিসপ্রোসিয়াম যৌগগুলি পানিতে দ্রবণীয়, যদিও ডিসপ্রোসিয়াম কার্বনেট টেট্রাহাইড্রেট (Dy2(CO3)3·4H2O) ও ডিসপ্রোসিয়াম অক্সালেট ডেকাহাইড্রেট (Dy2(C2O4)3 ·10H2O) উভয়ই পানিতে অদ্রবণীয়।[৯][১০] দুটি সর্বাধিক প্রাপ্ত ডিসপ্রোসিয়াম কার্বনেট, যথা Dy(CO3)3·2–3H2O (খনিজ টেনজেরাইট-(Y) এর অনুরূপ), এবং DyCO3 (OH) (খনিজ কোজোয়েট-(La) ও কোজোয়েট-(Nd) এর অনুরূপ), তদের পূর্ববর্তী (precursor) দুর্বলভাবে বিন্যস্ত (অনিয়তাকার) দশা যার সংকেত হচ্ছে Dy2(CO3)3·4H 2O এর মাধ্যমে গঠিত হয় বলে জানা যায়। এই অনিয়তাকার পূর্ববর্তী (দশা অবস্থার) যৌগটি (precursor) ১০-২০ ন্যানোমিটার (nm) ব্যাসের উচ্চ পানিযোজিত গোলাকার ন্যানো কণা নিয়ে গঠিত যা পারিপার্শ্বিক (ambient) ও উচ্চ তাপমাত্রায় শুষ্ক অবস্থার অধীনে ব্যতিক্রমভাবে স্থিতিশীল।[১১]

আইসোটোপসমূহ সম্পাদনা

প্রাকৃতিকভাবে প্রাপ্ত ডিসপ্রোসিয়াম সাতটি আইসোটোপ দ্বারা গঠিত যথা: 156Dy, 158Dy, 160Dy, 161Dy, 162Dy, 163Dy, ও 164Dy। এগুলির সবগুলোকে স্থিতিশীল হিসাবে বিবেচনা করা হয়, যদিও তাত্ত্বিকভাবে 156Dy আলফা ক্ষয় এর মাধ্যমে ক্ষয়প্রাপ্ত হয় যার অর্ধ-জীবন ধরা হয় ১×১০ ১৮ বছরের অধিক। ডিসপ্রোসিয়াম হল আইসোটোপ আছে এমন মৌলসমূহের মধ্যে সবচেয়ে ভারী একটি মৌল যা পর্যবেক্ষণগতভাবে স্থিতিশীল বা তেজস্ক্রিয় নয়। প্রাকৃতিকভাবে প্রাপ্ত আইসোটোপগুলির মধ্যে, 164Dy সর্বাপেক্ষা সু-প্রচুর (২৮%), তারপরে 162Dy (২৬%)। (প্রাকৃতিকভাবে) সর্বাপেক্ষা কম পাওয়া যায় 156Dy (০.০৬%)।[১২]

২৯টি রেডিওআইসোটোপও সংশ্লেষিত হয়েছে যাদের পারমাণবিক ভর ১৩৮ থেকে ১৭৩ পর্যন্ত। এর মধ্যে সবচেয়ে স্থিতিশীল হল 154 Dy, যার অর্ধ-জীবন প্রায় ৩×১০ বছর, তারপরে 159Dy যার অর্ধ-জীবন ১৪৪.৪ দিন। সর্বনিম্ন স্থিতিশীল হল 138 Dy, যার অর্ধ-জীবন ২০০ মিলি সেকেন্ড। সাধারণ নিয়ম মতে, স্থিতিশীল আইসোটোপের চেয়ে হালকা আইসোটোপগুলি প্রাথমিকভাবে β+ ক্ষয় (β+ decay) দ্বারা ক্ষয়প্রাপ্ত হয়, অন্যদিকে যেগুলি ভারী তারা β ক্ষয় দ্বারা ক্ষয়প্রাপ্ত হয়। যাইহোক, 154Dy ক্ষয়প্রাপ্ত হয় প্রাথমিকভাবে আলফা ক্ষয় (alpha decay) দ্বারা, এবং 152Dy ও 159Dy ক্ষয়প্রাপ্ত হয় প্রাথমিকভাবে ইলেক্ট্রন ক্যাপচারের মাধ্যমে।[১২] ডিসপ্রোসিয়ামের অন্তত ১১টি মেটাস্টেবল আইসোমার রয়েছে, যাদের পারমাণবিক ভর ১৪০ থেকে ১৬৫ পর্যন্ত। এগুলোর মধ্যে সবচেয়ে স্থিতিশীল হল 165mDy, যার অর্ধ-জীবন ১.২৫৭ মিনিট। 149Dy-এর দুটি মেটাস্টেবল আইসোমার রয়েছে, যার মধ্যে দ্বিতীয়টির তথা 149m2Dy এর অর্ধ-জীবন ২৮ ন্যানোসেকেন্ড (28 ns)।[১২]

ইতিহাস সম্পাদনা

১৮৭৮ সালে, আরবিয়াম আকরিকগুলি হলমিয়ামথুলিয়ামের অক্সাইড ধারণ করে বলে জানা যায়। ফরাসি রসায়নবিদ পল এমিল লেকোক ডি বোইসবউড্রান হলমিয়াম অক্সাইডের উপর কাজ করার সময়, ১৮৮৬ সালে প্যারিসে এটি থেকে ডিসপ্রোসিয়াম অক্সাইড আলাদা করেন।[১৩][১৪] ডিসপ্রোসিয়ামকে আলাদা করার জন্য তার অনুসৃত পদ্ধতিতে অ্যাসিডে ডিসপ্রোসিয়াম অক্সাইড দ্রবীভূত করা, তারপর অ্যামোনিয়া যোগ করার মাধ্যমে হাইড্রোক্সাইড অধঃক্ষিপ্ত করা জড়িত। তিনি তার পদ্ধতিতে ৩০ বারেরও বেশি প্রচেষ্টার পরেই কেবলমাত্র ডিসপ্রোসিয়ামকে এর অক্সাইড থেকে আলাদা করতে সক্ষম হন। সফল হওয়ার পর, তিনি গ্রীক শব্দ ডিসপ্রোসিটোস (δυσπρόσιτος) যার অর্থ "পাওয়া কঠিন" থেকে মৌলটির নামকরণ করেন ডিসপ্রোসিয়াম। ১৯৫০-এর দশকের গোড়ার দিকে আইওয়া স্টেট ইউনিভার্সিটিতে ফ্র্যাঙ্ক স্পেডিং কর্তৃক আয়ন বিনিময় কৌশলসমূহের (ion exchange techniques) বিকাশের আগে পর্যন্ত উপাদানটি তুলনামূলকভাবে বিশুদ্ধ আকারে নিষ্কাশন করা যায়নি।[২][১৫]

বায়ু টারবাইনের জন্য ব্যবহৃত স্থায়ী চুম্বকে এটির ব্যবহারের ভূমিকার কারণে এমনটা যুক্তি দেখানো হয় যে, ডিসপ্রোসিয়াম নবায়নযোগ্য শক্তির উপর চলমান বিশ্বে ভূ-রাজনৈতিক প্রতিযোগিতার অন্যতম প্রধান বস্তু হয়ে উঠবে। কিন্তু এই দৃষ্টিকোণটির সমালোচনা করা হয়েছে দু'টি কারণে। প্রথমত বেশিরভাগ বায়ু টারবাইন স্থায়ী চুম্বক ব্যবহার করে না- (দৃষ্টিকোণটি) এটি চিহ্নিত করতে ব্যর্থ হয়েছে এবং দ্বিতীয়তঃ বর্ধিত উৎপাদনের জন্য অর্থনৈতিক প্রণোদনার শক্তিও (দৃষ্টিকোণটি) বুঝতে ব্যর্থ হয়েছে।[১৬][১৭]

২০২১ সালে ডিসপ্রোসিয়ামকে (Dy) একটি 2-মাত্রিক সুপারসলিড কোয়ান্টাম গ্যাসে পরিণত করা হয়েছিল।[১৮]

প্রাকৃতিকভাবে প্রাপ্তি সম্পাদনা

 
জেনোটাইম

যদিও ডিসপ্রোসিয়ামকে কখনই একটি মুক্ত উপাদান হিসাবে পাওয়া যায় না, এটি জেনোটাইম , ফার্গুসোনাইট , গ্যাডোলিনাইট , ইউক্সেনাইট , পলিক্রেস , ব্লমস্ট্র্যান্ডিন , মোনাজাইটবাস্টনাসাইট সহ অনেক খনিজ পদার্থে প্রায়শই এর্বিয়ামহলমিয়াম বা অন্যান্য বিরল-মৃত্তিকা-ধাতুসমূহের (rare earth elements) সাথে পাওয়া যায়। এখন পর্যন্ত একটিও ডিসপ্রোসিয়াম-প্রধান খনিজ (অর্থাৎ, আকরিকের সংমিশ্রণে অন্যান্য বিরল-মৃত্তিকা-ধাতুসমূহের চেয়ে ডিসপ্রোসিয়াম প্রধান যৌগ রুপে বিদ্যমান) পাওয়া যায়নি।[১৯]

এগুলোর উচ্চ- ইট্রিয়াম অবস্থারুপে, ডিসপ্রোসিয়াম ভারী ল্যান্থানাইডের মধ্যে সবচেয়ে বেশি পরিমাণে থাকে, যার মধ্যে ৭-৮% পর্যন্ত ঘনীভূত থাকে (ইট্রিয়ামের তুলনায় প্রায় ৬৫%)।[২০][২১] পৃথিবীর ভূত্বকে ডিসপ্রোসিয়ামের (Dy) ঘনত্ব প্রায় ৫.২ মিলিগ্রাম/কেজি ও সমুদ্রের পানিতে ০.৯ ন্যানোগ্রাম/লিটার (ng/L)।[৭]

উৎপাদন সম্পাদনা

ডিসপ্রোসিয়াম প্রাথমিকভাবে মোনাজাইট বালি থেকে পাওয়া যায়, যা বিভিন্ন ফসফেটের মিশ্রণ। ইট্রিয়ামের বাণিজ্যিক নিষ্কাশনে ধাতুটি উপজাত-পণ্য হিসাবে পাওয়া যায়। ডিসপ্রোসিয়ামের নিষ্কাশনের সময় বেশিরভাগ অবাঞ্ছিত ধাতু চুম্বকীয়ভাবে বা ভাসমান প্রক্রিয়ার মাধ্যমে অপসারণ করা যেতে পারে। এরপর ডিসপ্রোসিয়ামকে অন্যান্য বিরল-মৃত্তিকা-ধাতুসমূহ হতে আয়ন বিনিময় অপসারণ প্রক্রিয়া দ্বারা পৃথক করা যেতে পারে। এরফলে প্রাপ্ত ডিসপ্রোসিয়াম আয়নগুলি ফ্লোরিন বা ক্লোরিনের সাথে বিক্রিয়া করে ডিসপ্রোসিয়াম ফ্লোরাইড, DyF3 বা ডিসপ্রোসিয়াম ক্লোরাইড, DyCl3 তৈরি করতে পারে। এই যৌগগুলিকে নিম্নলিখিত বিক্রিয়ার মাধ্যমে ক্যালসিয়াম বা লিথিয়াম ধাতু ব্যবহার করে বিজারিত করা যেতে পারে:[৮]

3 Ca + 2 DyF 3 → 2 Dy + 3 CaF 2
3 Li + DyCl 3 → Dy + 3 LiCl

একটি ট্যানটালাম ক্রুসিবলে উপাদানগুলি রাখা হয় এবং হিলিয়াম বায়ুমণ্ডলে সেগুলোকে দহন করা হয়। বিক্রিয়ার অগ্রগতির সাথে সাথে ঘনত্বের পার্থক্যের কারণে উৎপন্ন হ্যালাইড যৌগগুলো এবং গলিত ডিসপ্রোসিয়াম আলাদা হয়ে যায়। যখন মিশ্রণটি ঠান্ডা হয়ে যায়, তখন অবিশুদ্ধ যৌগগুলো (impurities) হতে ডিসপ্রোসিয়ামকে আলাদাভাবে কেটে পৃথক করা যেতে পারে।[৮]

প্রতি বছর বিশ্বব্যাপী প্রায় ১০০ টন ডিসপ্রোসিয়াম উৎপাদিত হয়,[২২] যার মোট ৯৯% উৎপাদিত হয় চীনে।[২৩] ডিসপ্রোসিয়ামের দাম প্রায় বিশ গুণ বেড়েছে - ২০০৩ সালে প্রতি পাউন্ড ৭ ডলার থেকে ২০১০ সালের শেষের দিকে প্রতি পাউন্ড ১৩০ ডলারে।[২৩] ২০১১ সালে দাম বৃদ্ধি পেয়ে দাঁড়ায় $১,৪০০/কেজি, কিন্তু ২০১৫ সালে তা $২৪০-এ নেমে এসেছে যা মূলতঃ চীনে সরকারী বিধিনিষেধ লঙ্ঘনপূর্বক অবৈধ উৎপাদনের কারণে ঘটেছে।[২৪]

বর্তমানে, বেশিরভাগ ডিসপ্রোসিয়াম দক্ষিণ চীনের আয়ন-শোষণকারী কাদামাটির আকরিক (ion-adsorption clay ores) থেকে পাওয়া যাচ্ছে।[২৫] নভেম্বর ২০১৮-এর হিসাব অনুযায়ী পশ্চিম অস্ট্রেলিয়ার হলস ক্রিক থেকে ১৬০ কি.মি. দক্ষিণ-পূর্বে অবস্থিত "ব্রাউনস রেঞ্জ প্রকল্প" পাইলট প্ল্যান্ট হতে বছরে ৫০ টন (৪৯ লং টন) (ডিসপ্রোসিয়াম) উৎপাদন করছে।[২৬][২৭]

ইউনাইটেড স্টেটস ডিপার্টমেন্ট অফ এনার্জি অনুসারে, এর (ডিসপ্রোসিয়াম) বর্তমান এবং ভবিষ্যৎ ব্যবহারের অপার সম্ভাবনা এবং সহসাই এর উপযুক্ত বিকল্প (মৌলের) অভাবের কারণে, উদীয়মান "পরিচ্ছন্ন শক্তি প্রযুক্তির" (clean energy technologies) ক্ষেত্রে ডিসপ্রোসিয়ামকে একক সবচেয়ে গুরুত্বপূর্ণ উপাদান মনে করা হয়; এমনকি তাদের (ইউনাইটেড স্টেটস ডিপার্টমেন্ট অফ এনার্জি) সবচেয়ে রক্ষণশীল অনুমান এমনটা পূর্বাভাস দিয়েছে যে, ২০১৫ সালের আগেই ডিসপ্রোসিয়ামের ঘাটতি দেখা দিতে পারে।[২৮] ২০১৫ সালের শেষের দিকে অস্ট্রেলিয়ায় একটি নতুন বিরল-মৃত্তিকা-ধাতু (ডিসপ্রোসিয়াম সহ) নিষ্কাশন শিল্প যাত্রা শুরু করেছে।[২৯]

প্রায়োগিক ব্যবহারসমূহ সম্পাদনা

ভ্যানাডিয়াম ও অন্যান্য উপাদানের সাথে, লেজারের উপকরণ এবং বাণিজ্যিক আলো তৈরিতে ডিসপ্রোসিয়াম ব্যবহার করা হয়। ডিসপ্রোসিয়ামের উচ্চ তাপ-নিউট্রন শোষণ ক্রস-সেকশনের কারণে ডিসপ্রোসিয়াম-অক্সাইড-নিকেল সারমেটগুলি পারমাণবিক চুল্লিতে নিউট্রন-শোষণকারী নিয়ন্ত্রণ রডগুলিতে ব্যবহৃত হয়।[২][৩০] ডিসপ্রোসিয়াম- ক্যাডমিয়াম চ্যালকোজেনাইডগুলি অবলোহিত বিকিরণ এর উৎস, যা কিনা রাসায়নিক বিক্রিয়ার (কৌশল) অধ্যয়নে দরকারী।[১] যেহেতু ডিসপ্রোসিয়াম এবং এর যৌগগুলি চুম্বককরণের (magnetization) ক্ষেত্রে অত্যন্ত সংবেদনশীল, তাই তাদেরকে বিভিন্ন ডেটা-স্টোরেজ অ্যাপ্লিকেশনে যেমন হার্ড ডিস্কে ব্যবহার করা হয়।[৩১] বৈদ্যুতিক-কার মোটর ও বায়ু-টারবাইন জেনারেটরে ব্যবহৃত স্থায়ী চুম্বকের জন্য ডিসপ্রোসিয়ামের চাহিদা বাড়ছে।[৩২]

নিওডিয়ামিয়াম-আয়রন-বোরন চুম্বকগুলিতে 6% পর্যন্ত নিওডিমিয়াম (neodymium) থাকতে পারে যা ডিসপ্রোসিয়াম[৩৩] দ্বারা প্রতিস্থাপিত। আর এমনটা (প্রতিস্থাপন) করা হয় এর (ডিসপ্রোসিয়াম) প্রায়োগিক চাহিদার জোরপূর্বক বৃদ্ধির নিমিত্তে যেমন, বৈদ্যুতিক যানবাহনের জন্য ড্রাইভ মোটর এবং বায়ু টারবাইনের জেনারেটরে এর প্রায়োগিক ব্যবহার। এরুপ প্রতিস্থাপনের জন্য প্রতি বৈদ্যুতিক গাড়িতে ১০০ গ্রাম পর্যন্ত ডিসপ্রোসিয়াম প্রয়োজন হবে। টয়োটা এর দেখানো বাৎসরিক ২ মিলিয়ন ইউনিট (উৎপাদন) এর উপর ভিত্তি করে বলা যায় যে, এই ধরনের অ্যাপ্লিকেশনে ডিসপ্রোসিয়ামের ব্যবহার দ্রুত এর সরবরাহকে নিঃশেষ করে দেবে।[৩৪] ডিসপ্রোসিয়াম প্রতিস্থাপন অন্যান্য প্রায়োগিক ক্ষেত্রেও কার্যকর হতে পারে, কারণ এটি চুম্বকের ক্ষয় প্রতিরোধ সক্ষমতাকে বৃদ্ধি করে।[৩৫]

আয়রন ও টের্বিয়াম সহ টেরফেনল-ডি এর অন্যতম উপাদান হচ্ছে ডিসপ্রোসিয়াম। জানা পদার্থগুলোর মধ্যে কক্ষ-তাপমাত্রায় টেরফেনল-ডি এর সর্বোচ্চ ম্যাগনেটোস্ট্রিকশন রয়েছে,[৩৬] যা পরিবর্তক , ওয়াইড-ব্যান্ড মেকানিকাল রেজোনেটর,[৩৭] এবং উচ্চ-নির্ভুল তরল-জ্বালানি ইনজেক্টরগুলিতে (high-precision liquid-fuel injectors) ব্যবহৃত হয়।[৩৮]

ডিসপ্রোসিয়াম আয়নীকরণ বিকিরণ পরিমাপের জন্য ডসিমিটারে ব্যবহৃত হয়। ক্যালসিয়াম সালফেট বা ক্যালসিয়াম ফ্লোরাইডের স্ফটিকগুলি ডিসপ্রোসিয়ামের সাথে ডোপায়ন (Doping (semiconductor)) করা হয়। যখন এই স্ফটিকগুলিকে বিকিরণের (radiation) সংস্পর্শে নিয়ে আসা হয়, তখন ডিসপ্রোসিয়াম পরমাণুগুলি উত্তেজিতআলোকিত হয়। (পরমাণুর) লুমিনেসেন্স পরিমাপ করা যেতে পারে যেন এর দ্বারা ডসিমিটারটিকে (dosimeter) কত মাত্রার (লুমিনেসেন্স) এর প্রভাবে (exposure) রাখা হয়েছিল তা নির্ধারণ করা যায়।[২]

ডিসপ্রোসিয়াম যৌগগুলি হতে তৈরি ন্যানোফাইবারগুলির উচ্চ শক্তি ও বৃহৎ পৃষ্ঠতল রয়েছে। তাই, এগুলিকে অন্যান্য পদার্থকে শক্তিশালী করতে এবং অনুঘটক (Catalyst) হিসাবে ব্যবহার করা যেতে পারে। DyBr3 এবং NaF-এর জলীয় দ্রবণকে ৪৫০ °সে. তাপমাত্রায় ও ৪৫০ বার চাপে ১৭ ঘন্টা যাবৎ উত্তপ্ত করে ডিসপ্রোসিয়াম অক্সাইড ফ্লোরাইডের তন্তুগুলিকে (Fibers) উৎপন্ন করা যেতে পারে। এই উপাদানটি উল্লেখযোগ্যভাবে শক্তিশালী, (কারণ) এটি ৪০০ °সে. এরও বেশি তাপমাত্রায় বিভিন্ন জলীয় দ্রবণে পুনঃদ্রবীভূত (redissolving) বা জমাটবদ্ধ (aggregating) হওয়া ছাড়াই ১০০ ঘন্টারও বেশি সময় ধরে (অপরিবর্তনীয়ভাবে) টিকে থাকে।[৩৯][৪০][৪১] উপরন্তু, পরীক্ষাগার পরিবেশে (laboratory environment) একটি দ্বিমাত্রিক সুপারসলিড তৈরি করতে ডিসপ্রোসিয়াম ব্যবহৃত হয়েছে। সুপারসলিডগুলি অতি-তরলতা (superfluidity) সহ (অন্যান্য) ব্যতিক্রমধর্মী বৈশিষ্ট্যগুলি প্রদর্শন করবে বলে আশা করা হচ্ছে।[৪২]

ডিসপ্রোসিয়াম আয়োডাইড ও ডিসপ্রোসিয়াম ব্রোমাইড উচ্চ-তীব্রতার ধাতব-হ্যালাইড ল্যাম্পগুলিতে ব্যবহৃত হয়। এই যৌগগুলি প্রদীপের (ধাতব-হ্যালাইড ল্যাম্প) উত্তপ্ত কেন্দ্রের কাছে ভেঙ্গে গিয়ে বিচ্ছিন্ন ডিসপ্রোসিয়াম পরমাণুগুলিকে নির্গত করে। এই বিচ্ছিন্ন ডিসপ্রোসিয়াম পরমাণুগুলো বর্ণালীর (spectrum) সবুজ ও লাল অংশে পুনরায় আলো নির্গত করে, যার ফলে ফলপ্রদভাবে উজ্জ্বল আলো তৈরি হয়।[২][৪৩]

ডিসপ্রোসিয়ামের বেশ কিছু প্যারাম্যাগনেটিক স্ফটিক লবণ ডিসপ্রোসিয়াম গ্যালিয়াম গারনেট- dysprosium gallium garnet, ডিজিজি- DGG; ডিসপ্রোসিয়াম অ্যালুমিনিয়াম গারনেট- dysprosium aluminum garnet, ডিএজি- DAG; ডিসপ্রোসিয়াম আয়রন গারনেট- dysprosium iron garnet, ডিওয়াইআইজি- DyIG) অ্যাডিয়াব্যাটিক ডিম্যাগনেটাইজেশন রেফ্রিজারেটরে ব্যবহৃত হয়।[৪৪][৪৫]

ত্রিযোজী ডিসপ্রোসিয়াম আয়নটিকে (Dy3+) এর নিম্নমুখী লুমিনেসেন্স (downshifting luminescence) বৈশিষ্ট্যের কারণে পরীক্ষা-নিরীক্ষা করা (studied) হয়েছে। Dy-ডোপায়িত ইট্রিয়াম অ্যালুমিনিয়াম গারনেট-কে (Dy:YAG) [yttrium aluminium garnet] ইলেক্ট্রোম্যাগনেটিক বর্ণালীর অতিবেগুনী অঞ্চলে উত্তেজিত করার ফলে এটি হতে বর্ণালীর দৃশ্যমান অঞ্চলে দীর্ঘতর তরঙ্গদৈর্ঘ্যের ফোটন নির্গত হয়। এই ধারণাটিই হলো একটি নতুন প্রজন্মের UV-পাম্পযুক্ত সাদা আলো-নির্গতকারী ডায়োডের (a new generation of UV-pumped white light-emitting diodes) ভিত্তি।[৪৬]

সতর্কতা সম্পাদনা

অপরাপর অনেক পাউডারের মতো, বাতাসের সংমিশ্রণে ও ইগনিশন (জ্বলন) উৎসের উপস্থিতিতে ডিসপ্রোসিয়াম পাউডার বিস্ফোরণের ঝুঁকি তৈরি করতে পারে। (ডিসপ্রোসিয়াম) পদার্থের পাতলা ফয়েলগুলিও স্পার্ক বা স্ট্যাটিক বিদ্যুতের দ্বারা প্রজ্বলিত হতে পারে। ডিসপ্রোসিয়ামের আগুন পানি দ্বারা নেভানো যায় না। এটি পানির সাথে বিক্রিয়া করে দাহ্য হাইড্রোজেন গ্যাস তৈরি করতে পারে।[৪৭] ডিসপ্রোসিয়াম ক্লোরাইডের আগুন পানি দ্বারা নিভিয়ে ফেলা যায়।[৪৮] ডিসপ্রোসিয়াম ফ্লোরাইড ও ডিসপ্রোসিয়াম অক্সাইড অ-দাহ্য (non-flammable)।[৪৯][৫০] ডিসপ্রোসিয়াম নাইট্রেট, Dy(NO3)3, একটি শক্তিশালী অক্সিডাইজিং এজেন্ট ও জৈব পদার্থের সংস্পর্শে সহজেই জ্বলে ওঠে।[৩]

দ্রবণীয় ডিসপ্রোসিয়াম লবণ, যেমন ডিসপ্রোসিয়াম ক্লোরাইড এবং ডিসপ্রোসিয়াম নাইট্রেট গিলে ফেলা হলে তা হালকা বিষাক্ত। ইঁদুরের ক্ষেত্রে ডিসপ্রোসিয়াম ক্লোরাইডের বিষাক্ততার উপর ভিত্তি করে এটি (ইঁদুরের উপর পরীক্ষাভিত্তিক) অনুমান করা হয় যে, ৫০০ গ্রাম বা তার বেশি পরিমাণ (ডিসপ্রোসিয়াম ক্লোরাইড বা নাইট্রেট বা অনুরুপ ডিসপ্রোসিয়াম যৌগ) গ্রহন করা হলে তা একজন মানুষের জন্য মৃত্যুর কারণ (fatal) হতে পারে ((c.f. ১০০ কিলোগ্রাম মানুষের জন্য 300 গ্রাম সাধারণ টেবিল লবণের প্রাণঘাতী ডোজ -lethal dose of 300 grams of common table salt for a 100 kilogram human)। ডিসপ্রোসিয়ামের অদ্রবণীয় লবণ অ-বিষাক্ত।[২]

তথ্যসূত্র সম্পাদনা

  1. "Dysprosium"। CRC Handbook of Chemistry and Physics। CRC Press। ২০০৭–২০০৮। পৃষ্ঠা 11আইএসবিএন 978-0-8493-0488-0 
  2. Emsley, John (২০০১)। Nature's Building Blocks। Oxford University Press। পৃষ্ঠা 129–132। আইএসবিএন 978-0-19-850341-5 
  3. Krebs, Robert E. (১৯৯৮)। "Dysprosium"The History and Use of our Earth's Chemical Elements। Greenwood Press। পৃষ্ঠা 234–235আইএসবিএন 978-0-313-30123-0 
  4. Jackson, Mike (২০০০)। "Wherefore Gadolinium? Magnetism of the Rare Earths" (পিডিএফ): 6। ২০১৭-০৭-১২ তারিখে মূল (পিডিএফ) থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০০৯-০৫-০৩ 
  5. Junyang Jin, Yaru Ni, Wenjuan Huang, Chunhua Lu, Zhongzi Xu (মার্চ ২০১৩)। "Controlled synthesis and characterization of large-scale, uniform sheet-shaped dysprosium hydroxide nanosquares by hydrothermal method": 333–337। আইএসএসএন 0925-8388ডিওআই:10.1016/j.jallcom.2012.11.068। সংগ্রহের তারিখ ২০১৮-০৬-১৩ 
  6. "Chemical reactions of Dysprosium"। Webelements। সংগ্রহের তারিখ ২০১২-০৮-১৬ 
  7. Patnaik, Pradyot (২০০৩)। Handbook of Inorganic Chemical Compounds। McGraw-Hill। পৃষ্ঠা 289–290। আইএসবিএন 978-0-07-049439-8। সংগ্রহের তারিখ ২০০৯-০৬-০৬ 
  8. Heiserman, David L. (১৯৯২)। Exploring Chemical Elements and their Compounds। TAB Books। পৃষ্ঠা 236–238। আইএসবিএন 978-0-8306-3018-9 
  9. Perry, D. L. (১৯৯৫)। Handbook of Inorganic Compounds। CRC Press। পৃষ্ঠা 152–154। আইএসবিএন 978-0-8493-8671-8 
  10. Jantsch, G.; Ohl, A. (১৯১১)। "Zur Kenntnis der Verbindungen des Dysprosiums": 1274–1280। ডিওআই:10.1002/cber.19110440215 
  11. Vallina, B., Rodriguez-Blanco, J.D., Brown, A.P., Blanco, J.A. and Benning, L.G. (২০১৩)। "Amorphous dysprosium carbonate: characterization, stability and crystallization pathways": 1438। ডিওআই:10.1007/s11051-013-1438-3সাইট সিয়ারX 10.1.1.705.3019  
  12. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (২০১৭)। "The NUBASE2016 evaluation of nuclear properties" (পিডিএফ)Chinese Physics C41 (3): 030001। ডিওআই:10.1088/1674-1137/41/3/030001বিবকোড:2017ChPhC..41c0001A 
  13. DeKosky, Robert K. (১৯৭৩)। "Spectroscopy and the Elements in the Late Nineteenth Century: The Work of Sir William Crookes": 400–423। জেস্টোর 4025503ডিওআই:10.1017/S0007087400012553 
  14. de Boisbaudran, Paul Émile Lecoq (১৮৮৬)। "L'holmine (ou terre X de M Soret) contient au moins deux radicaux métallique (Holminia contains at least two metal)" (ফরাসি ভাষায়): 1003–1006। 
  15. Weeks, Mary Elvira (১৯৫৬)। The discovery of the elements (6th সংস্করণ)। Journal of Chemical Education। 
  16. Overland, Indra (২০১৯-০৩-০১)। "The geopolitics of renewable energy: Debunking four emerging myths": 36–40। আইএসএসএন 2214-6296ডিওআই:10.1016/j.erss.2018.10.018  
  17. Klinger, Julie Michelle (২০১৭)। Rare earth frontiers : from terrestrial subsoils to lunar landscapes। Cornell University Press। আইএসবিএন 978-1501714603জেস্টোর 10.7591/j.ctt1w0dd6d 
  18. Norcia, Matthew A.; Politi, Claudia (আগস্ট ২০২১)। "Two-dimensional supersolidity in a dipolar quantum gas" (ইংরেজি ভাষায়): 357–361। arXiv:2102.05555 আইএসএসএন 1476-4687ডিওআই:10.1038/s41586-021-03725-7পিএমআইডি 34408330 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  19. Hudson Institute of Mineralogy (১৯৯৩–২০১৮)। "Mindat.org"www.mindat.org। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৮ 
  20. Naumov, A. V. (২০০৮)। "Review of the World Market of Rare-Earth Metals": 14–22। ডিওআই:10.1007/s11981-008-1004-6 
  21. Gupta, C. K.; Krishnamurthy N. (২০০৫)। Extractive Metallurgy of Rare Earths। CRC Press। আইএসবিএন 978-0-415-33340-5 
  22. "Dysprosium (Dy) - Chemical properties, Health and Environmental effects"। Lenntech Water treatment & air purification Holding B.V.। ২০০৮। সংগ্রহের তারিখ ২০০৯-০৬-০২ 
  23. Bradsher, Keith (ডিসেম্বর ২৯, ২০১০)। "In China, Illegal Rare Earth Mines Face Crackdown"The New York Times 
  24. Rare Earths archive.
  25. Bradsher, Keith (ডিসেম্বর ২৫, ২০০৯)। "Earth-Friendly Elements, Mined Destructively"The New York Times 
  26. Major, Tom (৩০ নভেম্বর ২০১৮)। "Rare earth mineral discovery set to make Australia a major player in electric vehicle supply chain"ABC News। Australian Broadcasting Corporation। সংগ্রহের তারিখ ৩০ নভেম্বর ২০১৮ 
  27. Brann, Matt (নভেম্বর ২৭, ২০১১)। "Halls Creek turning into a hub for rare earths" 
  28. New Scientist, 18 June 2011, p. 40
  29. Jasper, Clint (2015-09-22) Staring down a multitude of challenges, these Australian rare earth miners are confident they can break into the market. abc.net.au
  30. Amit, Sinha; Sharma, Beant Prakash (২০০৫)। "Development of Dysprosium Titanate Based Ceramics": 1064–1066। ডিওআই:10.1111/j.1551-2916.2005.00211.x 
  31. Chemistry Foundations and Applications। Thomson Gale। ২০০৪। পৃষ্ঠা 267–268আইএসবিএন 978-0-02-865724-0 
  32. Bourzac, Katherine (১৯ এপ্রিল ২০১১)। "The Rare Earth Crisis"। MIT Technology Review। সংগ্রহের তারিখ ১৮ জুন ২০১৬ 
  33. Shi, Fang, X.; Shi, Y. (১৯৯৮)। "Modeling of magnetic properties of heat treated Dy-doped NdFeB particles bonded in isotropic and anisotropic arrangements" (Submitted manuscript): 1291–1293। ডিওআই:10.1109/20.706525 
  34. Campbell, Peter (ফেব্রুয়ারি ২০০৮)। "Supply and Demand, Part 2"। Princeton Electro-Technology, Inc.। জুন ৪, ২০০৮ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০০৮-১১-০৯ 
  35. Yu, L. Q.; Wen, Y. (২০০৪)। "Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB": 353–356। ডিওআই:10.1016/j.jmmm.2004.06.006 
  36. "What is Terfenol-D?"। ETREMA Products, Inc.। ২০০৩। ২০১৫-০৫-১০ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০০৮-১১-০৬ 
  37. Kellogg, Rick; Flatau, Alison (মে ২০০৪)। "Wide Band Tunable Mechanical Resonator Employing the ΔE Effect of Terfenol-D": 355–368। ডিওআই:10.1177/1045389X04040649 
  38. Leavitt, Wendy (ফেব্রুয়ারি ২০০০)। "Take Terfenol-D and call me": 97। সংগ্রহের তারিখ ২০০৮-১১-০৬ 
  39. "Supercritical Water Oxidation/Synthesis"। Pacific Northwest National Laboratory। ২০০৮-০৪-২০ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০০৯-০৬-০৬ 
  40. "Rare Earth Oxide Fluoride: Ceramic Nano-particles via a Hydrothermal Method"। Pacific Northwest National Laboratory। Archived from the original on ২০১০-০৫-২৭। সংগ্রহের তারিখ ২০০৯-০৬-০৬ 
  41. Hoffman, M. M.; Young, J. S. (২০০০)। "Unusual dysprosium ceramic nano-fiber growth in a supercritical aqueous solution": 4177। ডিওআই:10.1023/A:1004875413406 
  42. "Physicists give weird new phase of matter an extra dimension"। Live Science। ১৮ আগস্ট ২০২১। সংগ্রহের তারিখ ১৮ আগস্ট ২০২১ 
  43. Gray, Theodore (২০০৯)। The Elements। Black Dog and Leventhal Publishers। পৃষ্ঠা 152–153আইএসবিএন 978-1-57912-814-2 
  44. Milward, Steve et al. (2004).
  45. Hepburn, Ian.
  46. Carreira, J. F. C. (২০১৭)। "YAG:Dy – Based single white light emitting phosphor produced by solution combustion synthesis": 251–258। ডিওআই:10.1016/j.jlumin.2016.11.017 
  47. Dierks, Steve (জানুয়ারি ২০০৩)। "Dysprosium"Material Safety Data Sheets। Electronic Space Products International। ২০১৫-০৯-২২ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০০৮-১০-২০ 
  48. Dierks, Steve (জানুয়ারি ১৯৯৫)। "Dysprosium Chloride"Material Safety Data Sheets। Electronic Space Products International। Archived from the original on ২০১৫-০৯-২২। সংগ্রহের তারিখ ২০০৮-১১-০৭ 
  49. Dierks, Steve (ডিসেম্বর ১৯৯৫)। "Dysprosium Fluoride"Material Safety Data Sheets। Electronic Space Products International। Archived from the original on ২০১৫-০৯-২২। সংগ্রহের তারিখ ২০০৮-১১-০৭ 
  50. Dierks, Steve (নভেম্বর ১৯৮৮)। "Dysprosium Oxide"Material Safety Data Sheets। Electronic Space Products International। Archived from the original on ২০১৫-০৯-২২। সংগ্রহের তারিখ ২০০৮-১১-০৭