ক্যালকুলাস

কলনবিদ্যা
(কলনবিদ্যা থেকে পুনর্নির্দেশিত)

ক্যালকুলাস বা কলন বা অণুকলন (ইংরেজি: Calculus) হলো অবিচ্ছিন্ন পরিবর্তনের গাণিতিক অধ্যয়ন, ঠিক যেমন জ্যামিতি হলো আকৃতির এবং বীজগণিত হলো পাটিগণিতের ক্রিয়াকলাপ সমূহের সাধারণীকরণের অধ্যয়ন। ক্যালকুলাসের দুটি প্রধান শাখা রয়েছে যার একটি হলো অন্তরকলন এবং অপরটি হলো সমাকলন। অন্তরকলনের সাহায্যে তাৎক্ষণিক পরিবর্তনের হার ও বক্ররেখার ঢাল নির্ণয় করা হয়, এবং সমাকলনের সাহায্যে কোনোকিছুর মোট পরিমাণ ও বক্ররেখা দ্বারা সীমাবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় করা হয়। এই শাখা দুটি ক্যালকুলাসের মৌলিক উপপাদ্যের সাহায্যে সম্পর্কিত এবং তারা অসীম ক্রম এবং অসীম ধারাকে একটি সু-সংজ্ঞায়িত সীমায় রূপান্তর করার মৌলিক ধারণাকে ব্যবহার করে।[১]

আইজাক নিউটন এবং গটফ্রিড ভিলহেল্ম লাইবনিৎস ১৭শ শতাব্দীর শেষের দিকে ইনফিনিটেসিমাল ক্যালকুলাসকে স্বাধীনভাবে বিকশিত করেছিলেন।[২][৩] বর্তমানে বিজ্ঞান, প্রকৌশল এবং অর্থনীতিতে ক্যালকুলাসের ব্যাপক ব্যবহার রয়েছে।[৪]

গণিত শিক্ষায় ক্যালকুলাস দ্বারা প্রাথমিক গাণিতিক বিশ্লেষণের পাঠ্যক্রমকে বোঝায়, যা মূলত ফাংশন এবং সীমা অধ্যয়নের জন্য নিবেদিত। ক্যালকুলাস (বহুবচনে ক্যালকুলাই) শব্দটি লাতিন ভাষা থেকে এসেছে এবং এর অর্থ "নুড়িপাথর"। বর্তমানে বিশ্ববিদ্যালয় পর্যায়ে অনেক ক্ষেত্রেই ক্যালকুলাস একটি বাধ্যতামূলক বিষয়।

ইতিহাসসম্পাদনা

আধুনিক ক্যালকুলাস ১৭শ শতাব্দীতে ইউরোপে আইজাক নিউটন এবং গট‌ফ্রিড ভিলহেল্ম লাইব‌নিৎস (একে অপরের সাথে আলাদাভাবে, তবে একই সময়ে প্রকাশিত) কর্তৃক বিকশিত হয়েছে তবে এর উপাদানগুলি প্রাচীন গ্রিসে, এরপর চীনে, এরপর মধ্যপ্রাচ্য এবং পুনরায় মধ্যযুগীয় ইউরোপ ও ভারতে আবির্ভাব হয়েছিল।

প্রাচীনসম্পাদনা

 
আর্কিমিডিস পরাবৃত্ত দ্বারা আবৃত ক্ষেত্রের ক্ষেত্রফল নির্ণয়ের জন্য নি:শেষ পদ্ধতি ব্যবহার করেছিলেন।

প্রাচীন আমলে কিছু ধারণা প্রবর্তিত হয়েছিল যা সমাকলন ক্যালকুলাসের দিকে পরিচালিত হলেও এই ধারণাগুলি যথাযথ এবং রীতিবদ্ধ পদ্ধতিতে বিকশিত হয়নি। আয়তন এবং ক্ষেত্রফল নির্ণয় হলো সমাকলন ক্যালকুলাসের একটি লক্ষ্য, যা মিশরীয় মস্কোর পাপিরাসগুলিতে (১৩তম রাজবংশ, আনু. ১৮২০ খ্রিষ্টপূর্ব) পাওয়া গিয়েছে; তবে সূত্রগুলি কেবল সাধারণ নির্দেশাবলী, পদ্ধতি সম্পর্কে কোনো ইঙ্গিত নেই এবং এগুলির কয়েকটিতে প্রধান উপাদানের ঘাটতি রয়েছে।[৫]

গ্রিক গণিতের যুগে ইউডক্সাস (আনু. ৪০৮–৩৫৫ খ্রিষ্টপূর্ব) নিঃশেষ পদ্ধতি ব্যবহার করেছিলেন যা ক্ষেত্রফল ও আয়তন নির্ণয়ের ক্ষেত্রে সীমার ধারণাকে পূর্বসূরিত করে। আর্কিমিডিস (আনু. ২৮৭–২১২ খ্রিষ্টপূর্ব) এই ধারণাকে সম্প্রসারিত করে হিউরিস্টিক আবিষ্কার করেছিলেন যা সমাকলন ক্যালকুলাসের পদ্ধতিগুলির সাথে সাদৃশ্যপূর্ণ।[৬]

পরে খ্রিস্টীয় তৃতীয় শতাব্দীতে চীনের লিউ হুই বৃত্তের ক্ষেত্রফল নির্ণয়ের জন্য নিঃশেষ হওয়ার পদ্ধতিটি আবিষ্কার করেছিলেন।[৭] খ্রিস্টীয় ৫ম শতাব্দীতে জু চঙঝির পুত্র জু গেঞ্জি একটি পদ্ধতি প্রতিষ্ঠা করেছিলেন [৮][৯] যা পরবর্তীকালে গোলকের আয়তন নির্ণয়ের কাভালিরির নীতি হিসেবে পরিচিত হয়েছিল।

মধ্যযুগীয়সম্পাদনা

 
আল-হাইজেন, একাদশ শতকের আরব গণিতবিদ এবং পদার্থবিজ্ঞানী

মধ্যপ্রাচ্যে হাসান ইবনে আল-হাইসাম, লাতিন ভাষায় আল-হাইজেন (আনু. ৯৬৫ – আনু. ১০৪০ খ্রিষ্টাব্দ) চতুর্থ ঘাতের ফাংশনের যোগফলের সূত্র তৈরি করেছিলেন। এই যোগফলকে তিনি প্যারাবলোইডের ক্ষেত্রফল গণনার জন্য ব্যবহার করেছিলেন, বর্তমানে যা ওই ফাংশনের সমাকলন হিসেবে পরিচিত হয়েছে।[১০]

চতুর্দশ শতাব্দীতে ভারতীয় গণিতবিদগণ কিছু ত্রিকোণমিতিক ফাংশনে প্রযোজ্য, আন্তরকলনের অনুরূপ একটি যথাযথ পদ্ধতি দিয়েছেন। সঙ্গমগ্রমার মাধব এবং কেরালা স্কুল অব অ্যাস্ট্রোনমি অ্যান্ড ম্যাথমেটিক্স ক্যালকুলাসের বিষয়বস্তু বর্ণনা করেছিলেন। এই বিষয়বস্তু সম্বলিত একটি সম্পূর্ণ তত্ত্ব বর্তমানে পশ্চিমা বিশ্বে টেলর ধারা হিসাবে পরিচিত।[১১] তবে তারা "পৃথক পৃথক ধারণাগুলিকে অন্তরজ এবং সমাকলনের অধীনে এনে উভয়ের মধ্যে সংযোগ প্রদর্শন করতে এবং বর্তমানে সমস্যা সমাধানের দুর্দান্ত সরঞ্জাম ক্যালকুলাসে পরিণত করতে সক্ষম ছিল না"।[১২]

আধুনিকসম্পাদনা

ভিত্তিসম্পাদনা

তাৎপর্যসম্পাদনা

নীতিমালাসম্পাদনা

সীমা এবং অনীয়ানসম্পাদনা

অন্তরকলন ক্যালকুলাসসম্পাদনা

লাইবনিৎস পাটীগণিতসম্পাদনা

সমাকলন ক্যালকুলাসসম্পাদনা

মৌলিক উপপাদ্যসম্পাদনা

প্রয়োগসম্পাদনা

বিভিন্নতাসম্পাদনা

বছরের পর বছর ধরে বিভিন্ন উদ্দেশ্যে ক্যালকুলাসের অনেকগুলি সংস্কার আবিষ্কার করা হয়েছে।

অনাদর্শ ক্যালকুলাসসম্পাদনা

মসৃণ অনীয়ান বিশ্লেষণসম্পাদনা

এটি হলো অনীয়ানসমূহের ক্ষেত্রে ক্যালকুলাসের আরেকটি সংস্কার। উইলিয়াম লওভেরের ধারণা এবং ক্যাটাগরি তত্ত্বের পদ্ধতিগুলি প্রয়োগের উপর ভিত্তি করে এটি সমস্ত ফাংশনকে অবিচ্ছিন্ন হিসেবে বিবেচনা করে এবং বিচ্ছিন্ন সত্ত্বার ক্ষেত্রে প্রকাশ করতে অক্ষম। এই সূত্রের একটি দিক হলো,এই সূত্রটি বাম মধ্যম সূত্রটিকে ধারণ করে না।

গঠনমূলক বিশ্লেষণসম্পাদনা

গঠনমূলক গণিত গণিতের একটি শাখা যা জোর দেয় যে একটি সংখ্যা, ফাংশন বা অন্যান্য গাণিতিক বস্তুর অস্তিত্বের প্রমাণগুলি বস্তুটির একটি নির্মাণ প্রদান করা উচিৎ। যেমন গঠনমূলক গণিতও বাম মধ্যম সুত্রটিকে প্রত্যাখ্যান করে। একটি গঠনমূলক কাঠামোয় ক্যালকুলাসের সংস্কার সাধারনত গঠনমূলক বিশ্লেষণের অংশ।

আরও দেখুনসম্পাদনা

তালিকাসম্পাদনা

অন্যান্য সম্পর্কিত বিষয়সম্পাদনা

অন্যান্য সম্পর্কিত বিষয়সম্পাদনা

তথ্যসূত্রসম্পাদনা

  1. DeBaggis, Henry F.; Miller, Kenneth S. (১৯৬৬)। Foundations of the Calculus। Philadelphia: Saunders। ওসিএলসি 527896 
  2. Boyer, Carl B. (১৯৫৯)। The History of the Calculus and its Conceptual Development । New York: Dover। ওসিএলসি 643872 
  3. Bardi, Jason Socrates (২০০৬)। The Calculus Wars : Newton, Leibniz, and the Greatest Mathematical Clash of All Time। New York: Thunder's Mouth Press। আইএসবিএন 1-56025-706-7 
  4. Hoffmann, Laurence D.; Bradley, Gerald L. (২০০৪)। Calculus for Business, Economics, and the Social and Life Sciences (8th সংস্করণ)। Boston: McGraw Hill। আইএসবিএন 0-07-242432-X 
  5. Morris Kline, Mathematical thought from ancient to modern times, Vol. I
  6. Archimedes, Method, in The Works of Archimedes আইএসবিএন ৯৭৮-০-৫২১-৬৬১৬০-৭
  7. Dun, Liu; Fan, Dainian; Cohen, Robert Sonné (১৯৬৬)। A comparison of Archimdes' and Liu Hui's studies of circles। Chinese studies in the history and philosophy of science and technology। 130। Springer। পৃষ্ঠা 279। আইএসবিএন 978-0-7923-3463-7 ,pp. 279ff
  8. Katz, Victor J. (২০০৮)। A history of mathematics (3rd সংস্করণ)। Boston, MA: Addison-Wesley। পৃষ্ঠা 203। আইএসবিএন 978-0-321-38700-4 
  9. Zill, Dennis G.; Wright, Scott; Wright, Warren S. (২০০৯)। Calculus: Early Transcendentals (3 সংস্করণ)। Jones & Bartlett Learning। পৃষ্ঠা xxvii। আইএসবিএন 978-0-7637-5995-7  Extract of page 27
  10. Katz, V.J. 1995. "Ideas of Calculus in Islam and India." Mathematics Magazine (Mathematical Association of America), 68(3):163–174.
  11. "Indian mathematics" 
  12. Katz, V.J. 1995. "Ideas of Calculus in Islam and India." Mathematics Magazine (Mathematical Association of America), 68(3):163–174.

আরও পড়ুনসম্পাদনা

গ্রন্থসম্পাদনা

অনলাইন গ্রন্থসম্পাদনা

বহিঃসংযোগসম্পাদনা

টেমপ্লেট:সমাকলন টেমপ্লেট:ক্যালকুলাসের বিষয়

টেমপ্লেট:গণিতের ক্ষেত্র

আইজাক নিউটন
সমগ্র জীবন
ধর্মীয় চিন্তাধারা
প্রিন্সিপিয়া ম্যাথামেটিকা রচনা
জ্যোতিষ শাস্ত্র চর্চা
গতি সূত্র
ক্যালকুলাস বিবাদ