অন্তরকলন
অন্তরকলন বা অবকলন বা ব্যবকলন বা অন্তরীকরন গণিতশাস্ত্রের এমন একটি শাখা যাতে কোনো রাশির অন্য কোনো রাশির সাপেক্ষে পরিবর্তনের হার নিয়ে আলোচনা করা হয়। অর্থাৎ ক্রমবর্ধমান বা ক্রমহ্রাসমান দুটি রাশি, যাদের মধ্যে ফাংশনাল সম্পর্ক রয়েছে, তাদের একের সাপেক্ষে অপরের পরিবর্তনের হার নিরূপণ এবং এর তাৎপর্য নির্ণয় অন্তরকলনের মূল উদ্দেশ্য।[১]

একটি বাস্তব চলকের বাস্তব ফাংশনের জন্য, কোনো বিন্দুতে ঐ ফাংশনের অন্তরকলন, লেখচিত্রটির স্পর্শকের ঢাল বা নতির সমান।
অন্যভাবে বলা যায়, একটি ফাংশনের অন্তরজ বা অন্তরক সহগ বা ডেরিভেটিভ নির্ণয়ের পদ্ধতিকে অন্তরকলন বলা হয়।[২]
আবিষ্কারসম্পাদনা
অনেক আগে থেকেই অন্তরকলনের কিছু বিষয় সম্পর্কে ভারতীয় গণিতবিদদের ধারণা ছিল। ভাস্করাচার্য, কেরলের মাধবাচার্য প্রমুখ রোলির উপপাদ্য,পাই এর মান, সাইনের অসীম শ্রেণি প্রভৃতি আবিষ্কার করেন। তবে তাঁরা কখনও একে পরিমাপের একটি স্বতন্ত্র পদ্ধতি হিসেবে প্রতিষ্ঠিত করতে পারেননি। কারণ তাঁরা অভ্যাসবশতই কিছু পদ্ধতি প্রয়োগ করতেন যেগুলো ছিল গণিতের সাধারণ পদ্ধতির বিশেষ প্রয়োগ। পরবর্তীকালে দুইটি রাশির একটির সূক্ষ্মাতিসূক্ষ্ম পরিবর্তনের জন্য অন্যটির পরিবর্তন অর্থাৎ একটির সাপেক্ষে অন্যটির পরিবর্তনের হার নিয়ে অনেকেই বিশদ চিন্তাভাবনা করেন। এভাবেই একসময় বক্ররেখা বেষ্টিত কোনো ক্ষেত্রের ক্ষেত্রফল, ঘনবস্তুর আয়তন প্রভৃতি নির্ণয়ের জন্য সমাকলন পদ্ধতির প্রয়োগ শুরু হয়। আর এই প্রায়োগিক আবিষ্কারের অংশীদার যৌথভাবে ইংরেজ বিজ্ঞানী স্যার আইজাক নিউটন এবং জার্মান বিজ্ঞানী গটফ্রিড লাইবনিৎস। সপ্তদশ শতাব্দীর শেষ ভাগে এই আবিষ্কারের ঘটনা ঘটে এবং নিউটন এবং লাইবনিৎস পরস্পর স্বাধীনভাবে এটি আবিষ্কার করেন। এজন্য দীর্ঘদিন পর্যন্ত নিউটন ও লাইবনিৎস সমর্থকদের মধ্যে এ আবিষ্কার নিয়ে দ্বন্দ্ব ছিল।
অন্তরীকরণ ও অন্তরজসম্পাদনা
ফাংশনের স্বাধীন চলরাশি এর মান ক্ষুদ্র পরিমাণে বৃদ্ধির সাপেক্ষে অধীন চলরাশি এর মানে বৃদ্ধি ঘটলে, এদের অনুপাতের সীমাস্থ মানই হবে এর সাপেক্ষে এর অন্তরক সহগ বা অন্তরজ।
অন্তরীকরণ হল অন্তরজ নির্ণয়ের একটি প্রক্রিয়া। কোনো ফাংশন f(x) এর চলক x এর জন্য এর অন্তরজ ঐ চলকের পরিবর্তনের সাপেক্ষে ফাংশনের পরিবর্তনের হার পরিমাপ করে। এটাকে বলে x এর সাপেক্ষে f এর অন্তরজ। যদি x ও y বাস্তব সংখ্যা হয়, তবে f বনাম x এর লেখচিত্র আঁকলে এর প্রতিটি বিন্দুতে অন্তরজের মান এর ঐ বিন্দুতে স্পর্শকের ঢালের মানের সমান।
ধ্রুব ফাংশন বাদ দিয়ে সবচেয়ে সহজ ক্ষেত্র হয় তখন, যখন y, x এর একটি রৈখিক ফাংশন হয়। এটার মানে হলো y বনাম x এর লেখচিত্র একটি সরলরেখা। এই শর্তে, y = f(x) = m x + b, m ও b বাস্তব সংখ্যা এবং ঢাল m হয়
যেখানে Δ (ডেল্টা) প্রতীকটি "পরিবর্তন" প্রকাশ করে। এই সূত্রটি সত্য কারণ
সুতরাং,
এভাবে,
এটি সরলরেখাটির একদম সঠিক ঢাল বের করে দেয়। যদি f ফাংশনটি সরলরৈখিক না হয় (উদাহরণটির লেখচিত্র সরলরেখা নয়) বা যাই হোক না কেন সেক্ষেত্রে y এর পরিবর্তন ও x এর পরিবর্তন এর অনুপাত পরিবর্তনশীল হবে। অন্তরীকরণ হল এমন প্রক্রিয়া যা দিয়ে x এর দেওয়া যেকোনো মানের জন্য পরিবর্তনের হারের একদম সঠিক মান পাওয়া যায়।
১ থেকে ৩ নং চিত্রের ধারণাটি Δx এর অতিক্ষুদ্র মানের জন্য পরিবর্তনদ্বয়ের অনুপাতের সীমান্ত মান, বা পরিবর্তনের হার হিসাব করার জন্য ব্যবহৃত হয়।
অবিচ্ছিন্নতা ও অন্তরীকরণযোগ্যতাসম্পাদনা
যদি, y = f(x), a বিন্দুতে অন্তরীকরণযোগ্য হয়, তবে f কে অবশ্যই a বিন্দুতে অবিচ্ছিন্ন হতে হবে। উদাহরণস্বরূপ, a একটি বিন্দু নিই এবং ধরি f হল একটি ধাপে বিচ্ছিন্ন ফাংশন যা একটি মান প্রদান করবে। x এর মান a এর চেয়ে ছোট হলে ১ প্রদান করে এবং x এর মান a এর চেয়ে বড় বা সমান হলে একটি ভিন্ন মান ১০ প্রদান করে। তাই, a তে f এর কোনো অন্তরজ থাকতে পারে না। যদি h ঋনাত্মক হয় তবে a+h হয় ধাপের নিম্ন অংশ তাই a থেকে a+h বিন্দুগামী ছেদক রেখা খুব খাড়া হবে অর্থাৎ, h শূন্যের কাছে পৌঁছালে ঢাল অসীমের কাছে পৌঁছায়। আবার যদি, h ধনাত্মক হয় তবে a+h হবে ধাপের উঁচু অংশ। তাই a ও a+h এর ছেদবিন্দুগামী রেখার ঢাল শূন্য। ফলে, ছেদক রেখার ঢাল কোনো একক ঢালের নিকটবর্তী হয় না। তাই পার্থক্য ভাগফলের সীমার কোন অস্তিত্ব নেই।
এমনকী কোনো ফাংশন একটি বিন্দুতে অবিচ্ছিন্ন হওয়া সত্ত্বেও সেখানে অন্তরীকরণযোগ্য নাও হতে পারে। উদাহরণস্বরূপ, পরম মান ফাংশন y = | x |, x = 0, বিন্দুতে অবিচ্ছিন্ন কিন্তু অন্তরীকরণযোগ্য নয়। যদি h ধনাত্মক হয় তবে 0 থেকে h এ ছেদকারী রেখার ঢাল হবে ১ কিন্তু যদি h ঋনাত্মক হয়, তবে 0 থেকে h এ ছেদকারী রেখার ঢাল হবে ঋনাত্মক ১। এটা লেখচিত্রে x = 0 তে "শিখর" মনে হবে। এমনকী একটি ফাংশনের লেখচিত্র সুষম হলেও যেখানে এর স্পর্শক উলম্ব সেখানে তা অন্তরীকরণযোগ্য নয়। উদাহরণস্বরূপ, y = x1/3 ফাংশন x = 0 তে অন্তরীকরণযোগ্য নয়।
সংক্ষেপে বলা যায়: একটি ফাংশন f এর অন্তরজ থাকার জন্য ফাংশন f কে অবিচ্ছিন্ন হতে হবে, কিন্তু কেবল একা অবিচ্ছিন্নতা ধরে রাখা যথেষ্ট নয়।
বাস্তবে সর্বাধিক ফাংশনের সব বিন্দুতেই বা প্রায় প্রতিটি বিন্দুতেই অন্তরজ আছে। প্রারম্ভিক ক্যালকুলাসের ইতিহাসে, অনেক গণিতবিদ ধারণা করেন যে একটি অবিচ্ছিন্ন ফাংশন প্রায় সব বিন্দুতেই অন্তরীকরণযোগ্য। মধ্য সময়ের দিকে, উদাহরণস্বরূপ, একটি ফাংশন একটি মনোটোনি ফাংশন বা লিপসিজ ফাংশন হলে তা সত্য হয়। যাইহোক, ১৯৭২ সালে, হুইসট্রাস এমন একটি ফাংশন খুঁজে পান যা অবিচ্ছিন্ন কিন্তু অন্তরীকরণযোগ্য নয়। এটি হুইসট্রাস ফাংশন হিসাবে পরিচিত। ১৯৩১ সালে, স্টিফান ব্যানাচ প্রমাণ করেণ যে অবিচ্ছিন্ন ফাংশনের সেটের জগতে একটি ক্ষুদ্র সেট যার কিছু বিন্দুতে এর একটি অন্তরজ আছে।.[৩] অনানুষ্ঠানিকভাবে, এটা বোঝায় যে খুব কম অবিচ্ছিন্ন ফাংশেনেরই অন্তত একটি বিন্দুতে অন্তরজ আছে।
অন্তরীকরণের জন্য প্রয়োজনীয় সূত্রসম্পাদনা
মৌলিক ফাংশনের জন্য নিয়মসম্পাদনা
বেশিরভাগ ফাংশনের অন্তরজ নির্ণেয়ের জন্য কিছু সাধারণ ফাংশনের অন্তরজ দরকার পরে। এই অসম্পূর্ণ তালিকায় এক চলকের সবচেয়ে বেশি ব্যবহৃত কিছু ফাংশনের অন্তরজ দেওয়া হলো।
- ঘাতের অন্তরজ: যদি
যেখানে r যেকোনো বাস্তব সংখ্যা, তাহলে
যেখানে এই ফাংশনটি সংজ্ঞায়িত। উদাহরণস্বরূপ, যদি হয় তাহলে,
এবং অন্তরজ ফাংশন কেবলমাত্র x এর ধনাত্মক মানের জন্য সংজ্ঞায়িত। x=0 এর জন্য নয় যখন r=0. এই নিয়ম এটাই বোঝায় যে x ≠ 0 এর জন্য f′(x) এর মান 0, যা সবসময় ধ্রুব নিয়ম (নিচে বিবৃত)
- বিপরীত ত্রিকোণমিতিক ফাংশন বা বিপরীত বৃত্তীয় ফাংশন
সংযুক্ত ফাংশনের নিয়মসম্পাদনা
অনেক ক্ষেত্রে দেখা যায়, অন্তরজ নির্ণয়ের সময় নিউটনের পার্থক্য ভাগফলের সরাসরি ব্যবহার জটিল সীমার জন্য এড়ানো হয়। সবচেয়ে সাধারণ নিয়ম কিছু হলো
- ধ্রুবকের সূত্র: যদি f(x) ধ্রুবক হয়, তবে
- যোগের সূত্র:
- যেকোনো ফাংশন f ও g এবং \alpha and \beta কোনো বাস্তব সংখ্যা হলে,
- গুণের সূত্র;
- ভাগের সূত্র:
- f ও g যেখানে যেকোনো ফাংশন এবং যেকোনো মানের জন্য g ≠ 0.
- চেইন রুল: যদি, , তাহলে
ব্যবহারসম্পাদনা
যদি রাশি রাশি x এর একটি অপেক্ষক হয়, তাহলে অন্তরকলনের সাহায্যে x এর কোন মানের জন্যে y এর মান সর্বাধিক বা সর্বনিম্ন, তা নির্ণয় করা যায়। পদার্থ-বিজ্ঞানে বহু ক্রিয়া সময়ের উপর নির্ভরশীল। এগুলির জন্য যে সমীকরণ, সেগুলি সমধান করতে অন্তরকলনের প্রয়োজন।
সহজ একটি ক্ষেত্রে, y=f(x)=mx+b,বাস্তব সংখ্যার m ও b, এবং নতি হবে m=Δy/Δx
যেখানে চিহ্ন Δ হল (গ্রিক বর্ণ Delta এর বড়হাতের অক্ষর) জন্য "ঐ ভেরিয়েবলের পরিবর্তনের" একটি সংক্ষেপ।যখন Δx ০ এর দিকে যায় তখন একে dy/dx আকারে প্রকাশ করা হয়।
একটি বিন্দু a তে একটি ফাংশন f এর অন্তরকলজ হবে-
উদাহরণসম্পাদনা
ফাংশন f(x)=x² এর x= 3 এ ,অন্তরকলনযোগ্য এবং তার অন্তরকলজ হয় 6.
সন্ততা এবং অন্তরকলনসম্পাদনা
একটি ফাংশনের অন্তরকলজ থাকার জন্য প্রয়োজনীয় শর্ত হল ফাংশনটি সন্তত হবে কিন্তু এই শর্ত পর্যাপ্ত নয়।
উচ্চতর অন্তরকলজসম্পাদনা
একটি ফাংশনের অন্তরকলজকে পুনরায় অন্তরকলন করলে দ্বিতীয় ক্রমের অন্তরকলজ পাওয়া যায়; তাকে f′′(x) রূপে প্রকাশ করা হয়। অনুরূপে উচ্চতর অন্তরকলজগুলি পাওয়া যায়।
অন্তরকলজ বের করার নিয়মসম্পাদনা
- যদি f(x) একটি ধ্রুবক হয় , তাহলে
- যোগের নিয়ম
- α ও β বাস্তব সংখ্যা
- গুণের নিয়ম
- ভাগের নিয়ম
- ;g ≠ 0
- চেইন নিয়ম
যদি হয় তবে
কয়েকটি সূত্রসম্পাদনা
দেখুন অন্তরকলন সূচী
আরও দেখুনসম্পাদনা
গণিত বিষয়ক এই নিবন্ধটি অসম্পূর্ণ। আপনি চাইলে এটিকে সম্প্রসারিত করে উইকিপিডিয়াকে সাহায্য করতে পারেন। |
- ↑ Anton, Howard; Irl Bivens and Davis, Stephen. Calculus: Early Transcendentals আইএসবিএন ৯৭৮১১১৮৮৮৫৩০৭
- ↑ Anton, Howard; Irl Bivens and Davis, Stephen. Calculus: Early Transcendentals আইএসবিএন ৯৭৮১১১৮৮৮৫৩০৭
- ↑ Banach, S. (1931), "Uber die Baire'sche Kategorie gewisser Funktionenmengen", Studia.