প্রধান মেনু খুলুন

ত্রিভুজ

তিন বাহু দ্বারা সীমাবদ্ধ ক্ষেত্র

সমতলীয় জ্যামিতির ভাষায় তিন বাহু দ্বারা সীমাবদ্ধ ক্ষেত্রকে ত্রিভুজ বলা হয়। এটি একটি বহুভুজ, যার তিনটি ছেদচিহ্ন ও তিনটি প্রান্ত থাকে। দ্বি-মাত্রিক তলে ত্রিভুজের তিনটি কোণের সমষ্টি ১৮০ ° বা দুই সমকোণ। এক সময় কেবল ইউক্লিডীয় জ্যামিতিতেই ত্রিভুজ নিয়ে আলোচনা করা হত। কিন্তু নিকোলাই লোবাচেভস্কি সহ অন্যান্য জ্যামিতি বিশেষজ্ঞদের অবদানের ফলে অসমতলীয় জ্যামিতিতেও বর্তমানে ত্রিভুজ নিয়ে আলোচনা করা হয়। এ ধরনের তলে ত্রিভুজের তিন কোণের সমষ্টি দুই সমকোণ নয়। অথচ ইউক্লিডীয় জ্যামিতির মূল ভিত্তিই হচ্ছে এই ধারণাটি।

ত্রিভুজ
Triangle
Triangle illustration.svg
একটি ত্রিভুজ
প্রান্ত এবং ছেদচিহ্ন
Schläfli symbol{৩} (সমবাহু এর জন্য)
ক্ষেত্রবিভিন্ন পদ্ধতি;
see below
অভ্যন্তরীণ কোণ (degrees)৬০° (সমবাহু এর জন্য)

প্রকারভেদসম্পাদনা

বাহুর দৈর্ঘ্যের ভিত্তিতেসম্পাদনা

বাহুর দৈর্ঘ্যের ভিত্তিতে ত্রিভুজ তিন প্রকারের হতে পারে। যথা:–

  • সমবাহু ত্রিভুজ - যার তিনটি বাহুরই দৈর্ঘ্য সমান। সমবাহু ত্রিভুজের ক্ষেত্রে প্রতিটি কোণের মান ৬০° হয়।
  • সমদ্বিবাহু ত্রিভুজ - যার যে-কোন দুইটি বাহুর দৈর্ঘ্য সমান। সমদ্বিবাহু ত্রিভুজের শীর্ষকোণ ৯০° হলে অপর সমান দুইটি বিপরীত কোণ ৪৫° করে হবে।
  • বিষমবাহু ত্রিভুজ - যার তিনটি বাহুর দৈর্ঘ্য তিন রকম। বিষমবাহু ত্রিভুজের তিনটি কোণ-ই পরস্পরের সঙ্গে অসমান হয়।

কোণের ভিত্তিতেসম্পাদনা

কোণের ভিত্তিতে ত্রিভুজ তিন প্রকার হতে পারে -

  • সমকোণী ত্রিভুজ - যার যেকোন একটি কোণ ১ সমকোণ বা ৯০° এর সমান।
  • সূক্ষ্মকোণী ত্রিভুজ - যার তিনটি কোণই সূক্ষ্মকোণ
  • স্থূলকোণী ত্রিভুজ - যার যেকোন একটি কোণ স্থূলকোণ
     
সমবাহুসমদ্বিবাহুবিষমবাহু
     
সমকোণীস্থূলকোণীসূক্ষ্মকোণী

ত্রিভুজের ক্ষেত্রফল পরিমাপসম্পাদনা

ত্রিভুজের ক্ষেত্রফল পরিমাপের নানা পদ্ধতি আছে। নিম্নে এরকম কয়েকটি পদ্ধতি আলোচনা করা হল।

জ্যামিতির মাধ্যমেসম্পাদনা

ত্রিভুজের ক্ষেত্রফল (Area) A পরিমাপের সূত্র হল:

 

যেখানে b হল ত্রিভুজের যে কোন একটি বাহুর দৈর্ঘ্য (ভূমি), h হল উচ্চতা, অর্থাৎ ভূমির বিপরীত শীর্ষবিন্দুর হতে ভূমির উপরে অঙ্কিত লম্ব। নিম্নের ছবিতে এটির ব্যাখ্যা ও উদাহরণ দেখান হলঃ

 
The triangle is first transformed into a parallelogram with twice the area of the triangle, then into a rectangle.

সূত্রটি কীভাবে এসেছে, তা ওপরের ছবি থেকে অনুধাবন করা সম্ভব। সবুজ বর্ণে চিহ্নিত ত্রিভুজের ক্ষেত্রফল বের করার জন্য, প্রথমে ত্রিভুজের একটি প্রতিকৃতি (উপরে নীল বর্ণের ত্রিভুজটি) তৈরি করে, সেটিকে 180° ঘুরানো হয়েছে। এর পর ত্রিভুজটি দুটিকে যুক্ত করে একটি সামান্তরিক পাওয়া যায়। সামান্তরিকের কিছু অংশ কেটে অন্য পাশে যুক্ত করে একটি আয়তক্ষেত্র পাওয়া যাবে। যেহেতু এই আয়তক্ষেত্রটির ক্ষেত্রফল হল 'bh', ত্রিভুজটির ক্ষেত্রফল অবশ্যই তার অর্ধেক, অর্থাৎ \frac{1}{2}bh.

ভেক্টরের সাহায্যেসম্পাদনা

 
সামান্তরিকটির ক্ষেত্রফল হল ভেক্টর দুটির ক্রস গুণনের সমান

পূর্বের উদাহরণের মত করে সামান্তরিকের ক্ষেত্রফল ভেক্টরের মাধ্যমের বের করে, তা থেকে ত্রিভুজের ক্ষেত্রফল বের করা সম্ভব। যদি ABAC যথাক্রমে A হতে B পর্যন্ত এবং A হতে C পর্যন্ত ভেক্টর হয়ে থাকে, তাহলে ABDC সামান্তরিকের ক্ষেত্রফল হল |AB × AC|, অর্থাৎ ABAC ভেক্টর দুইটির ক্রস গুণনের সমান। |AB × AC| হল |h × AC| এর সমতূল্য, যেখানে h হল সামান্তরিকটির উচ্চতাসূচক ভেক্টর।

এই ফলাফল অনুযায়ী ত্রিভুজ ABC এর ক্ষেত্রফল হল সামান্তরিকটির অর্ধেক, অর্থাৎ S = ½|AB × AC|.

ত্রিকোণমিতির সাহায্যেসম্পাদনা

 
ত্রিকোণমিতি ব্যবহার করে উচ্চতা h নির্ণয় করণ।

ত্রিভুজের উচ্চতা ত্রিকোণমিতির সাহায্যে সহজেই বের করা যায়। বাম পার্শ্বের ছবিতে, ত্রিভুজ ABC এর উচ্চতা

h = a sin γ।

এই ফলাফল উপরে উল্লিখিত S = ½bh সূত্রে বসালে পাওয়া যায়, ত্রিভুজটির ক্ষেত্রফল হল,

S = ½ab sin γ

স্থানাংকের মাধ্যমেসম্পাদনা

যদি A বিন্দুটির কার্তেসীয় স্থানাংক (0, 0) এবং B ও C এর স্থানাংক যথাক্রমে B = (xByB) ও C = (xCyC) হয়ে থাকে, তাহলে ত্রিভুজটির ক্ষেত্রফল S হল এই বিন্দু তিনটির নির্ণায়কের অর্ধেক, অর্থাৎ

 

যেকোন তিন বিন্দুর জন্য সাধারণ ভাবে সূত্রটি হল:

 

ঘণজ্যামিতি, অর্থাৎ ত্রিমাত্রিক জ্যামিতিতে, ত্রিভুজাকৃতির এলাকা {A = (xAyAzA), B = (xByBzB) and C = (xCyCzC)} এর ক্ষেত্রফল হল তিনটি মূল সমতলে (i.e. x=0, y=0 and z=0) ত্রিভুজটির অভিক্ষেপের পিথাগোরীয় যোগফল, অর্থাৎ -

 

হিরনের সূত্রের সাহায্যেসম্পাদনা

ত্রিভুজের ক্ষেত্রফল বের করার জন্য হিরনের সূত্র হল:

 

যেখানে s = ½ (a + b + c) হচ্ছে অর্ধ-পরিসীমা, অর্থাৎ ত্রিভুজটির পরিসীমার অর্ধেক। কোন ত্রিভুজে পরিসীমা হল ঐ ত্রিভুজের তিন বাহুর দৈর্ঘ্যের যোগফল।

ত্রিভুজ সংক্রান্ত বিভিন্ন বিন্দু ও রেখাসম্পাদনা

শীর্ষসম্পাদনা

যে তিনটি বিন্দু জুড়ে ত্রিভুজ তৈরি হয়। প্রতিটি শীর্ষ এক জোড়া বাহুর সংযোগ স্থল।

বাহুসম্পাদনা

ত্রিভুজের পরিসীমা যে তিনটি রেখাংশ দ্বারা সমপূর্ণ হয়।অথবা ত্রিভুজের দুটি শীর্ষ বিন্দুর সংযোগ রেখাকে বাহু বলে।

মধ্যমাসম্পাদনা

ত্রিভুজের যেকোন শীর্ষ ও বিপরীত বাহুর মধ্যবিন্দু সংযোগকারী রেখাংশ এক একটি মধ্যমা। ত্রিভুজের মধ্যমাত্রয় সমবিন্দুগামী।

ভরকেন্দ্রসম্পাদনা

 
ভরকেন্দ্র

যেখানে মধ্যমাত্রয় মিলিত হয় ত্রিভুজের ভরকেন্দ্র (centroid) হল সেই বিন্দু

(ভরকেন্দ্র গামী যেকোন রেখার দুপাশের ক্ষেত্রফল (এবং সেই অনপাতে ভর) সমান।

ভরকেন্দ্র প্রতিটি মধ্যমাকে ১:২ অনুপাতে বিভক্ত করে।

সমবাহু ত্রিভুজের বাহুগুলোর মধ্যবিন্দু পর্যায়ক্রমে যোগ করলে যে চারটি ত্রিভুজ উৎপন্ন হয় তা - সমকোণী ত্রিভুজ

লম্বকেন্দ্রসম্পাদনা

 
লম্বকেন্দ্র

ত্রিভুজের তিনটি শীর্ষ থেকে বিপরীত বাহুগুলির উপর তিনটি লম্ব সমবিন্দুগামী, এবং বিন্দুটির নাম লম্বকেন্দ্র(orthocenter)

পরিবৃত্তসম্পাদনা

 
পরিবৃত্ত

তিনটি শীর্ষবিন্দু যোগ করে যেমন একটিমাত্র ত্রিভুজ হয় তেমনি তিনটি বিন্দু (শীর্ষ)গামী বৃত্তও একটিই, এর নাম পরিবৃত্ত।

পরিকেন্দ্রসম্পাদনা

পরিবৃত্তের কেন্দ্র (যে বিন্দু ত্রিভুজের শীর্ষত্রয় থেকে সমদূরত্বে স্থিত)।

অসমতলীয় জ্যামিতিতে ত্রিভুজসম্পাদনা

কেবলমাত্র সমতলীয় জ্যামিতিতে (ইউক্লিডিয় জ্যামিতি বা অধিবৃত্তীয় জ্যামিতি) ত্রিভুজের তিনটি কোণের সমষ্টি ১৮০° বা দুই সমকোণঅসমতলীয় বা অ-ইউক্লিডিয় জ্যামিতির উদাহরণঃ

চিত্র:Spherical triangle.png
উপবৃত্তীয় জ্যামিতিতে ত্রিভুজের তিনটি কোণের সমষ্টি > ১৮০°
 
পরাবৃত্তীয় জ্যামিতি ত্রিভুজের তিনটি কোণের সমষ্টি < ১৮০°