ইউক্লিডীয় জ্যামিতি

আলেকজান্দ্রিয়ার গ্রিক গণিতবিদ ইউক্লিড জ্যামিতির উপর লেখা তার "এলিমেন্টস" গ্রন্থে যে ধরনের গাণিতিক পদ্ধতির আলোচনা করেছেন সেটাই এখন ইউক্লিডীয় জ্যামিতি নামে পরিচিত। ইউক্লিডীয় পদ্ধতি সজ্ঞাতভাবে আবশ্যিক স্বতঃসিদ্ধসমূহের একটি ক্ষুদ্র সেটের অনুমান এবং এসব অনুমান থেকে প্রাপ্ত অন্যান্য অনেক প্রতিজ্ঞার মত (উপপাদ্য) সিদ্ধান্তের অন্তর্ভুক্ত। যদিও ইউক্লিডের প্রাপ্ত অনেক ফলাফলই তার পূর্বতন গণিতবিদেরা[১] আলোচনা করেছিলেন, তাসত্ত্বেও একটি বিস্তৃত অবরোহী এবং যৌক্তিক পদ্ধতির মধ্যে এসব প্রতিজ্ঞা কিভাবে সন্নিবেশ করা যায় তা ইউক্লিডই প্রথম দেখিয়েছিলেন।[২] সমতল জ্যামিতি নিয়ে যাত্রা শুরু করা এলিমেন্টস গ্রন্থটি স্বতঃসিদ্ধ ব্যবস্থা এবং গাণিতিক প্রমাণের প্রথম উদাহরণ হিসেবে মাধ্যমিক পর্যায়ের পাঠ্যক্রমের অংশরূপে আজও পড়ানো হয়ে থাকে। এটি ত্রিমাত্রিক ক্ষেত্র ব্যবস্থার কঠিন জ্যামিতির সাথে মানানসই। এলিমেন্টসের বেশিরভাগ আলোচনা থেকে যে ফলাফল পাওয়া যায় জ্যামিতিক ভাষায় তা এখন বীজগণিতসংখ্যাতত্ত্ব নামে পরিচিত।[১]

রাফায়েলের আঁকা স্কুল অব দি অ্যাথেন্স– যেখানে একজন গ্রিক গণিতবিদকে মুখ্যরূপে চিত্রায়ন করা হয়েছে। এতে খুব সম্ভবত ইউক্লিড অথবা আর্কিমিডিসকে কম্পাস দিয়ে একটি জ্যামিতিক চিত্র অঙ্কনরত অবস্থায় উপস্থাপন করা হয়েছে।

বিগত দুই হাজার বছরেরও বেশি সময় যাবৎ অন্য কোন ধরনের জ্যামিতির আবির্ভাব না ঘটায় "ইউক্লিডীয়" (Euclidean) বিশেষণটি এতদিন অপ্রয়োজনীয় ছিল। সমান্তরাল রেখার স্বীকার্যের ব্যতিক্রমের সম্ভাবনা সত্ত্বেও ইউক্লিডের অন্যান্য স্বতঃসিদ্ধগুলো সজ্ঞাতভাবে এতটাই অনস্বীকার্য মনে হত যে এগুলোর মাধ্যমে প্রমাণিত যে কোনো উপপাদ্যকে পরমভাবে এমনকি অপার্থিব অর্থেও সত্য বলে গণ্য করা হত। বর্তমান সময়ে স্বতঃসঙ্গত অনেক অ-ইউক্লিডীয় জ্যামিতির দেখা পাওয়া যায় যার প্রথমটি ১৯শ শতকে গোড়ায় আবিষ্কৃত হয়েছে। অ্যালবার্ট আইনস্টাইনের সাধারণ আপেক্ষিকতার তত্ত্বের একটি অন্তর্নিহিত বিষয় হল এই যে, স্বয়ং ভৌত ক্ষেত্র ইউক্লিডীয় নয়। এবং মহাকর্ষীয় ক্ষেত্রের সামর্থ্যের সাপেক্ষে ইউক্লিডীয় স্থান বা ক্ষেত্র কেবল স্বল্প দূরত্বের জন্য ভাল একটি অনুমান।[৩]

ইউক্লিডীয় জ্যামিতি হল সংশ্লেষী জ্যামিতির একটি উদাহরণ যেখানে যৌক্তিকভাবেই বিন্দু ও রেখার ন্যায় জ্যামিতিক বস্তুগুলোর মৌলিক ধর্ম বর্ণনাকারী স্বতঃসিদ্ধসমূহ থেকে এটি এদেরকে নির্দেশকারী স্থানাঙ্কের কোন ব্যবহার ব্যতিরেকে এদের প্রতিজ্ঞাসমূহের দিকে অগ্রসর হয়। এটি স্থানাঙ্ক জ্যামিতির বিপরীত যা মধ্যে জ্যামিতিক প্রতিজ্ঞার বীজগাণিতিক সূত্রে অনুবাদে স্থানাঙ্ক ব্যবহার করে।

তথ্যসূত্রসম্পাদনা

  1. Eves 1963, p. 19
  2. Eves 1963, p. 10
  3. Misner, Thorne, and Wheeler (1973), p. 47

গ্রন্থপঞ্জিসম্পাদনা

বহিঃসংযোগসম্পাদনা