আণবিক জীববিদ্যার কেন্দ্রীয় নীতি

আণবিক জীববিজ্ঞানের কেন্দ্রীয় প্রামাণিকতা একটি জৈবিক সিস্টেমের মধ্যে জিনগত তথ্যের প্রবাহের ব্যাখ্যা। এটি প্রায়শই এভাবে বলা হয় যে "ডিএনএ আরএনএ তৈরি করে, এবং আরএনএ প্রোটিন তৈরি করে",[১] যদিও এটি এর আদি অর্থ নয়। এটি প্রথম ফ্রান্সিস ক্রিক ১৯৫7 সালে বলেছিলেন,[২][৩] তারপরে ১৯৫৮ সালে প্রকাশিত:[৪][৫]

জৈবিক সংস্থাপণায় তথ্য প্রবাহ

এবং 1970 সালে প্রকাশিত একটি নেচার পত্রিকায় পুনরায় বিবৃত:[৬]

--- ফ্রান্সিস ক্রিক, ১৯৫৮

কেন্দ্রীয় ডগমা এর দ্বিতীয় সংস্করণ জনপ্রিয় তবে ভুল। জেমস ওয়াটসন জিনের আণবিক জীববিজ্ঞানের প্রথম সংস্করণে প্রকাশিত এটি সরল ডিএনএ → আরএনএ → প্রোটিন পথ 19 ওয়াটসনের সংস্করণ ক্রিকের থেকে আলাদা কারণ ওয়াটসন দ্বি-পদক্ষেপের (ডিএনএ → আরএনএ এবং আরএনএ → প্রোটিন) প্রক্রিয়াটিকে কেন্দ্রীয় ডগমা হিসাবে বর্ণনা করেছেন।

ডগমা হ'ল তথ্য বহনকারী বায়োপলিমারগুলির মধ্যে সিকোয়েন্স তথ্য স্থানান্তরকে বোঝার জন্য একটি কাঠামো, সবচেয়ে সাধারণ বা সাধারণ ক্ষেত্রে, জীবিত প্রাণীর মধ্যে । এই জাতীয় বায়োপলিমারগুলির 3 টি প্রধান শ্রেণি রয়েছে: ডিএনএ এবং আরএনএ (উভয় নিউক্লিক অ্যাসিড) এবং প্রোটিন । এর মধ্যে ঘটতে পারে এমন 3 × 3 = 9 of 3 × 3 = 9 টি সরাসরি স্থানান্তর এর ধারণা রয়েছে। ডগমাগুলিকে 3 টি গ্রুপে ভাগ করে: তিনটি সাধারণ ট্রান্সফার (বেশিরভাগ কোষে সাধারণত দেখা যায় বলে মনে করা হয়), তিনটি বিশেষ স্থানান্তর (যা কিছু ভাইরাসের ক্ষেত্রে বা পরীক্ষাগারে নির্দিষ্ট পরিস্থিতিতে দেখা যায়), এবং তিনটি অজানা স্থানান্তর (মনে করা হয় কখনও ঘটে না)। জৈবিক তথ্যের স্বাভাবিক প্রবাহকে সাধারণ স্থানান্তর বর্ণনা করে: ডিএনএকে ডিএনএ ( ডিএনএ রেপ্লিকেশন ) অনুলিপি করা যায়, ডিএনএ তথ্য এমআরএনএ ( প্রতিলিপি ) অনুলিপি করা যায়, এবং প্রোটিনগুলি এমআরএনএ-তে তথ্য টেমপ্লেট ( অনুবাদ ) হিসাবে ব্যবহার করে সংশ্লেষ করা যায়। বিশেষ স্থানান্তরগুলি বর্ণনা করে: আরএনএকে আরএনএ ( আরএনএ রেপ্লিকেশন ) থেকে অনুলিপি করা, ডিএনএকে আরএনএ টেম্পলেট ( বিপরীত ট্রান্সক্রিপশন ) ব্যবহার করে সংশ্লেষিত করা হচ্ছে, এবং প্রোটিনগুলি এমআরএনএ ব্যবহার না করে সরাসরি ডিএনএ টেম্পলেট থেকে সংশ্লেষিত করা হচ্ছে। অজানা স্থানান্তরগুলি বর্ণনা করে: একটি প্রোটিন থেকে একটি প্রোটিন অনুলিপি করা হয়, আরএনএ সংশ্লেষণ হিসাবে প্রোটিনের প্রাথমিক কাঠামোটিকে টেমপ্লেট হিসাবে ব্যবহার করে এবং ডিএনএ সংশ্লেষণ একটি প্রোটিনের প্রাথমিক কাঠামোটিকে টেমপ্লেট হিসাবে ব্যবহার করে - এগুলি প্রাকৃতিকভাবে ঘটে বলে মনে করা হয় না। [৬]

Biopolymers যে ডিএনএ, RNA- এর এবং (বহু) গঠিত peptides রৈখিক পলিমার হয় (অর্থাৎ, প্রতিটি monomer সর্বাধিক দুটি অন্যান্য monomers সাথে সংযুক্ত করা হয়)। তাদের মনোমরসগুলির ক্রম তথ্যকে কার্যকরভাবে এনকোড করে। কেন্দ্রীয় নীতি দ্বারা বর্ণিত তথ্যের স্থানান্তর আদর্শভাবে বিশ্বস্ত, নির্ণায়ক স্থানান্তর, যেখানে একটি বায়োপলিমারের ক্রমটি অন্য বায়োপলিমার নির্মানের জন্য একটি টেমপ্লেট হিসাবে ব্যবহৃত হয় যা সম্পূর্ণ বায়োপলিমার ক্রমের উপর নির্ভরশীল।

Cdmb.svg

জৈবিক সারিবদ্ধ তথ্যের সাধারণ স্থানান্তরসম্পাদনা

কেন্দ্রীয় তত্ব অনুসারে সম্ভাব্য তথ্য চলাচল এর টেবিল।
সাধারণ বিশেষ অজানা
DNA → DNA RNA → DNA protein → DNA
DNA → RNA RNA → RNA protein → RNA
RNA → protein DNA → protein protein → protein

ডিএনএ প্রতিলিপিসম্পাদনা

এই অর্থে যে কোনও কোষের বংশের জন্য জেনেটিক উপাদান সরবরাহ করা উচিত, যদি সোম্যাটিক বা প্রজননকারী, ডিএনএ থেকে ডিএনএতে যুক্তিযুক্তভাবে অনুলিপি করা অনিয়মিতভাবে কেন্দ্রীয় ডিগ্রিটির মূল পদক্ষেপ। রেপ্লিজোম নামে একটি জটিল প্রোটিন সমষ্টি জনিত্রী স্ট্র্যান্ড থেকে পরিপূরক কন্যা স্ট্র্যান্ডের তথ্যের প্রতিলিপি সম্পাদন করে। [৭]

রেপ্লিজোমে রয়েছে:

  • একটি হেলিকেজ যা প্রতিলিপি শাখা তৈরি করতে সুপারহেলিক্সের পাশাপাশি ডাবল-স্ট্র্যান্ডেড ডিএনএ হেলিক্সকে খুলে ফেলে [৭]
  • এসএসবি প্রোটিন যা বাঁধা ডাবল স্ট্র্যান্ডযুক্ত ডিএনএকে পুনরায় সংক্রমণ থেকে রক্ষা করতে খুলবে
  • আরএনএ প্রাইমেস যা প্রতিলিপিটির জন্য প্রথম পয়েন্ট হিসাবে প্রতিটি টেম্পলেট স্ট্র্যান্ডের পরিপূরক আরএনএ প্রাইমার যুক্ত করে
  • ডিএনএ পলিমারেজ III যা বিদ্যমান 'টেমপ্লেট চেইনটি এর 3' প্রান্ত থেকে তার 5 'প্রান্তে পড়ে এবং কন্যা শৃঙ্খলের 5' প্রান্ত থেকে 3 'প্রান্তে নতুন পরিপূরক নিউক্লিওটাইড যুক্ত করে
  • ডিএনএ পলিমারেজ আই যা আরএনএ প্রাইমারগুলি সরিয়ে দেয় এবং তাদের প্রতিস্থাপন করে ডিএনএ
  • ডিএনএ লিগেজ যা দুটি ওকাজাকি টুকরোয়ের সাথে ফসফোডিস্টার বন্ডের সাথে যোগ করে একটি অবিচ্ছিন্ন শৃঙ্খলা তৈরি করে

এই প্রক্রিয়াটি সাধারণত কোষ চক্রের এস পর্যায়ে ঘটে।

ট্রান্সক্রিপশনসম্পাদনা

ট্রান্সক্রিপশন হ'ল প্রক্রিয়া যার মাধ্যমে ডিএনএর একটি অংশে থাকা তথ্য সদ্য প্রেরণকারী মেসেঞ্জার আরএনএ (এমআরএনএ) এর আকারে প্রতিলিপি করা হয়। প্রক্রিয়াটির সুবিধার্থে এনজাইমগুলির মধ্যে আরএনএ পলিমেরেজ এবং প্রতিলিপি উপাদান অন্তর্ভুক্ত রয়েছে। ইউক্যারিওটিক কোষগুলিতে প্রাথমিক প্রতিলিপিটি প্রাক-এমআরএনএ হয় । অনুবাদটি এগিয়ে যাওয়ার জন্য প্রাক-এমআরএনএ অবশ্যই প্রক্রিয়া করা উচিত। প্রসেসিংয়ে প্রি-এমআরএনএ চেইনে 5 'টুপি এবং একটি পলি-এ লেজ যুক্ত হয়, এর পরে স্প্লিকিং হয় ing বিকল্প স্প্লাইসিং যখন উপযুক্ত হয় তখন কোনও একক এমআরএনএ উত্পাদন করতে পারে এমন প্রোটিনের বৈচিত্র্য বাড়িয়ে তোলে। পুরো ট্রান্সক্রিপশন প্রক্রিয়ার পণ্য (যা প্রাক-এমআরএনএ চেইনের উত্পাদন দিয়ে শুরু হয়েছিল) একটি পরিণত এমআরএনএ শৃঙ্খলা।

অনুবাদনসম্পাদনা

পরিণত এমআরএনএ একটি রাইবোসোমে যায় যেখানে এটি অনুবাদ হয়প্রোক্য়ারিওটিক কোষগুলিতে, যার কোনও নিউক্লিয়াস নেই, প্রতিলিপি এবং অনুবাদ প্রক্রিয়াগুলি স্পষ্ট বিচ্ছেদ ছাড়াই একসাথে সঙ্ঘটিত হতে পারে। ইউক্যারিওটিক কোষে ট্রান্সক্রিপশন ( সেল নিউক্লিয়াস ) সাইটটি সাধারণত অনুবাদ সাইট ( সাইটোপ্লাজম ) থেকে পৃথক করা হয়, সুতরাং এমআরএনএ অবশ্যই নিউক্লিয়াস থেকে সাইটোপ্লাজমে স্থানান্তরিত করতে হবে, যেখানে এটি রাইবোসোম দ্বারা আবদ্ধ হতে পারে। রাইবোসোম এমআরএনএ ট্রিপলেট কোডনগুলি পড়ে, সাধারণত একটি এওজি ( অ্যাডেনিন - ইউরাসিল - গুয়ানিন ), বা রাইবোসোম বাইন্ডিং সাইটের নীচে প্রবর্তক মেথিওনাইন কোডন দিয়ে শুরু হয়। আরম্ভের কারণসমূহ এবং প্রসারিত উপাদানগুলির জটিলগুলি এমিনোসিয়েটেলেড ট্রান্সফার আরএনএগুলি (টিআরএনএ) নিয়ে আসে, এমআরএনএ-তে কোডনকে টিআরএনএ-এর অ্যান্টি-কোডনের সাথে মিলে যায়। প্রতিটি টিআরএনএ সঠিকভাবে অ্যামিনো অ্যাসিডের অবশিষ্টাংশ বহন করে যা সংশ্লেষিত হওয়ার সাথে পলিপেপটাইড চেইনে যুক্ত হয়। অ্যামিনো অ্যাসিডগুলি ক্রমবর্ধমান পেপটাইড শৃঙ্খলে যুক্ত হওয়ার সাথে সাথে চেইনটি সঠিক রূপান্তরকরণে ভাঁজ শুরু করে। অনুবাদ একটি স্টপ কোডন দিয়ে শেষ হয় যা ইউএএ, ইউজিএ বা ইউএজি ট্রিপলেট হতে পারে।

এমআরএনএতে পরিপক্ক প্রোটিনের প্রকৃতি নির্দিষ্ট করার জন্য সমস্ত তথ্য থাকে না। রাইবোসোম থেকে প্রকাশিত সদ্যোজাত পলিপপটিড চেইনের সাধারণত চূড়ান্ত পণ্যটি উদ্ভূত হওয়ার আগে অতিরিক্ত প্রক্রিয়াজাতকরণের প্রয়োজন হয়। একটি জিনিস জন্য, সঠিক ভাঁজ প্রক্রিয়া জটিল এবং প্রাণবন্ত গুরুত্বপূর্ণ। বেশিরভাগ প্রোটিনের জন্য পণ্যের ফর্মটি নিয়ন্ত্রণ করতে এটি অন্যান্য চ্যাপারোন প্রোটিনের প্রয়োজন। কিছু প্রোটিন তারপরে তাদের নিজস্ব পেপটাইড চেইনগুলি থেকে অভ্যন্তরীণ অংশগুলিকে আবগারি করে, ফাঁক সীমানা করে এমন ফ্রি প্রান্তকে বিভক্ত করে; এই জাতীয় প্রক্রিয়াগুলিতে অভ্যন্তরীণ "বাতিল" বিভাগগুলিকে ইনটিন বলে । অন্যান্য প্রোটিনগুলি বিভক্ত না করে একাধিক বিভাগে বিভক্ত করতে হবে। কিছু পলিপপটিড চেইনগুলি ক্রস-লিঙ্কযুক্ত হওয়া দরকার, এবং অন্যদের কার্যক্ষম হওয়ার আগে অন্যদের হ্যাম (হেম) এর মতো কফ্যাক্টরের সাথে সংযুক্ত করা আবশ্যক।

জৈবিক ক্রমিক তথ্যের বিশেষ স্থানান্তরসম্পাদনা

বিপরীত প্রতিলিপিসম্পাদনা

 
সবুজতে হাইলাইট করা তথ্যের অস্বাভাবিক প্রবাহ

বিপরীত প্রতিলিপি হ'ল আরএনএ থেকে ডিএনএ (সাধারণ প্রতিলিপিটির বিপরীত) এ তথ্য স্থানান্তর the এটি রেট্রোভাইরাসগুলির ক্ষেত্রে যেমন এইচআইভি, পাশাপাশি ইউক্যারিওটসে, রেট্রোট্রান্সপসসনস এবং টেলোমিয়ার সিনথেসিসের ক্ষেত্রে দেখা যায়। এটি সেই প্রক্রিয়া যার মাধ্যমে আরএনএ থেকে জিনগত তথ্যগুলি নতুন ডিএনএতে প্রতিলিপি হয়।

আরএনএ প্রতিরূপসম্পাদনা

আরএনএ-র প্রতিরূপ হ'ল এক আরএনএ-র অনুলিপি করা। অনেক ভাইরাস এইভাবে প্রতিলিপি। আরএনএ-নির্ভর নির্ভর আরএনএ পলিমেরেস নামক নতুন আরএনএতে আরএনএকে অনুলিপি করে এমন এনজাইমগুলি অনেকগুলি ইউক্যারিওটিতে পাওয়া যায় যেখানে তারা আরএনএ স্তব্ধকরণের সাথে জড়িত। [৮]

আরএনএ সম্পাদনা, যাতে একটি আরএনএ ক্রম একটি জটিল প্রোটিন এবং একটি "গাইড আরএনএ" দ্বারা পরিবর্তিত হয়, তাকে আরএনএ-থেকে-আরএনএ স্থানান্তর হিসাবেও দেখা যেতে পারে।

ডিএনএ থেকে প্রোটিনের সরাসরি অনুবাদসম্পাদনা

ডিএনএ থেকে প্রোটিনের সরাসরি অনুবাদ একটি সেল-মুক্ত সিস্টেমে (অর্থাত্ একটি টেস্ট টিউবে) প্রদর্শিত হয়েছে, ই কোলির থেকে নির্যাসগুলি ব্যবহার করে যা রাইবোসোমগুলিকে ধারণ করে, তবে অক্ষত কোষ নয় cells এই কোষের টুকরোগুলি এককভাবে প্রবাহিত ডিএনএ টেম্পলেটগুলি থেকে অন্য জীবের (ই, জি।, মাউস বা তুষার) থেকে বিচ্ছিন্ন প্রোটিনগুলিকে সংশ্লেষ করতে পারে এবং নিউোমিসিনকে এই প্রভাব বাড়ানোর জন্য পাওয়া যায়। তবে, অনুবাদের এই প্রক্রিয়াটি জেনেটিক কোডের সাথে বিশেষভাবে মিলছে কিনা তা স্পষ্ট ছিল না। [৯][১০]

তথ্যের স্থানান্তর সুস্পষ্টভাবে কেন্দ্রীয় তত্ত্বের অন্তর্ভুক্ত নয় (কেন্দ্রীয় তত্বের ব্যাতিক্রম)সম্পাদনা

অনুবাদন -পরবর্তী পরিবর্তনসম্পাদনা

নিউক্লিক অ্যাসিড চেইন থেকে প্রোটিন অ্যামিনো অ্যাসিডের অনুক্রমগুলি অনুবাদ হওয়ার পরে, উপযুক্ত এনজাইম দ্বারা সেগুলি সম্পাদনা করা যেতে পারে। যদিও এটি প্রোটিনের ক্রমকে প্রভাবিত করে এমন এক ধরনের প্রোটিন, যা স্পষ্ট করে কেন্দ্রীয় গোড়ামার দ্বারা আচ্ছাদিত নয়, এমন দুটি পরিষ্কার উদাহরণ নেই যেখানে দুটি ক্ষেত্রের সম্পর্কিত ধারণাগুলির একে অপরের সাথে খুব বেশি সম্পর্ক রয়েছে।

ইনটেইনসম্পাদনা

একটি ইনটিন হ'ল প্রোটিনের একটি "পরজীবী" বিভাগ যা রাইনোসোম থেকে উদ্ভূত হওয়ার সাথে সাথে অ্যামিনো অ্যাসিডের শৃঙ্খল থেকে নিজেকে উত্তোলন করতে সক্ষম হয় এবং মূল প্রোটিন "ব্যাকবোন" এমনভাবে একটি পেপটাইড বন্ডের সাথে অবশিষ্ট অংশগুলিতে পুনরায় যোগদান করতে সক্ষম হয় বিচ্ছিন্ন না। এটি একটি প্রোটিনের একটি প্রাথমিক জিনের ডিএনএ দ্বারা এনকোডেড অনুক্রম থেকে নিজস্ব প্রাথমিক ক্রম পরিবর্তন করার একটি ঘটনা। অতিরিক্তভাবে, বেশিরভাগ ইনটিনে একটি হোমিং এন্ডোনুক্লেজ বা এইচইজি ডোমেন থাকে যা অভিজাত জিনের অনুলিপিটি অন্তর্ভুক্ত করে না যা ইনটিন নিউক্লিয়োটাইড ক্রমকে অন্তর্ভুক্ত করে না। ইন্টিন-মুক্ত অনুলিপিটির সংস্পর্শে, এইচইজি ডোমেন ডিএনএ ডাবল-স্ট্র্যান্ডড ব্রেক ব্রেক মেরামত প্রক্রিয়া শুরু করে। এই প্রক্রিয়াটির কারণে মূল উত্স জিন থেকে ইন্টিন-মুক্ত জিনে অনুলিপিটি অনুলিপি করা হয়। এটি সরাসরি ডিএনএ সিকোয়েন্স সম্পাদনা করার প্রোটিনের উদাহরণ, পাশাপাশি সিকোয়েন্সের heritতিহ্যবাহী প্রসার বৃদ্ধির উদাহরণ।

মিথাইলেশনসম্পাদনা

ডিএনএর মেথিলেশন অবস্থার পরিবর্তনের ফলে জিনের প্রকাশের মাত্রা উল্লেখযোগ্যভাবে পরিবর্তিত হতে পারে । মেথিলেশন প্রকরণটি সাধারণত ডিএনএ মেথিলেসের ক্রিয়া দ্বারা ঘটে। পরিবর্তনটি যখন উত্তরাধিকারসূত্রে হয় তখন এপিজেনেটিক হিসাবে বিবেচিত হয়। যখন তথ্য স্থিতির পরিবর্তন heritতিহ্যবাহী না হয়, এটি একটি সোম্যাটিক মহাকাব্য হবে । কার্যকর তথ্য সামগ্রীটি ডিএনএতে প্রোটিন বা প্রোটিনের ক্রিয়া দ্বারা পরিবর্তিত হয়েছে, তবে প্রাথমিক ডিএনএ ক্রমটি পরিবর্তন করা হয়নি।

প্রিয়ন বা প্রায়নসম্পাদনা

প্রিয়ন গুলি নির্দিষ্ট কনফরমেশন রূপগুলিতে নির্দিষ্ট অ্যামিনো অ্যাসিডের ক্রমগুলির প্রোটিন হয়। তারা একই অ্যামিনো অ্যাসিড ক্রমের সাহায্যে প্রোটিনের অন্যান্য অণুগুলিতে কনফরমেটিভ পরিবর্তন করে হোস্ট কোষগুলিতে নিজেদের প্রচার করে, তবে কার্যকরীভাবে গুরুত্বপূর্ণ বা জীবের পক্ষে ক্ষতিকারক একটি ভিন্ন রূপ ধারণ করে। প্রোটিনটি একবার প্রিওড ফোল্ডিংয়ে রূপান্তরিত হয়ে গেলে এটির কার্যকারিতা পরিবর্তন হয়। পরিবর্তে এটি নতুন কোষগুলিতে তথ্য পৌঁছে দিতে পারে এবং সেই ক্রমের আরও কার্যকরী অণুগুলিকে বিকল্প prion আকারে পুনরায় কনফিগার করতে পারে। ছত্রাকের কয়েকটি ধরনের প্রিনে এই পরিবর্তনটি ধারাবাহিক এবং সরাসরি; তথ্য প্রবাহ হ'ল প্রোটিন   →   প্রোটিন

আলাইন ই বুসার্ড এবং ইউজিন কুনিনের মতো কিছু বিজ্ঞানী যুক্তি দিয়েছেন যে প্রিওন-মধ্যস্থ উত্তরাধিকার আণবিক জীববিজ্ঞানের কেন্দ্রীয় মতবাদ লঙ্ঘন করেছে। [১১][১২] যাইহোক, প্রিন্সের মলিকুলার প্যাথলজি (2001) -তে রোজালিন্ড রিডলি লিখেছেন যে "প্রিয়ন অনুমানটি আণবিক জীববিজ্ঞানের কেন্দ্রীয় নীতির সাথে একমত নয় যে প্রোটিন তৈরির জন্য প্রয়োজনীয় তথ্য নিউক্লিক অ্যাসিডের নিউক্লিওটাইড অনুক্রমের মধ্যে এনকোডড — কারণ এটি প্রোটিনগুলি প্রতিবিম্বিত করে বলে দাবি করে না। বরং এটি দাবি করে যে প্রোটিন অণুগুলির মধ্যে এমন একটি তথ্যের উত্স রয়েছে যা তাদের জৈবিক ক্রিয়ায় অবদান রাখে এবং এই তথ্যগুলি অন্য অণুগুলিতেও প্রেরণ করা যায় " [১৩]

প্রাকৃতিক জেনেটিক ইঞ্জিনিয়ারিংসম্পাদনা

জেমস এ। শাপিরো যুক্তি দিয়েছেন যে এই উদাহরণগুলির একটি সুপারটেটকে প্রাকৃতিক জেনেটিক ইঞ্জিনিয়ারিং হিসাবে শ্রেণীবদ্ধ করা উচিত এবং কেন্দ্রীয় নীতিতে মিথ্যা প্রমাণের পক্ষে যথেষ্ট। যদিও শাপিরো তার দৃষ্টিভঙ্গির জন্য শ্রদ্ধাজনক শ্রবণ পেয়েছেন, তবুও তাঁর সমালোচকরা নিশ্চিত হননি যে কেন্দ্রীয় কৌতূহল নিয়ে তাঁর পড়া ক্রিকের উদ্দেশ্য অনুসারে ছিল। [১৪][১৫]

"ডগমা" শব্দটির ব্যবহারসম্পাদনা

ক্রিক তার আত্মজীবনী, হোয়াট ম্যাড পার্সুইট-এ, ডগমা শব্দটি তাঁর পছন্দ এবং এটির ফলে সৃষ্ট কিছু সমস্যা সম্পর্কে লিখেছিলেন:

"আমি এই ধারণাটিকে দুটি কারণেই কেন্দ্রীয় ধারণা বলে অভিহিত করেছি suspect আমি ইতিমধ্যে অনুক্রমের হাইপোথিসিসের স্পষ্ট শব্দ অনুমানটি ব্যবহার করেছিলাম এবং এ ছাড়াও আমি এই নতুন অনুমানটি আরও কেন্দ্রীয় এবং আরও শক্তিশালী বলে পরামর্শ দিতে চেয়েছিলাম। । । । দেখা গেল, ডগমা শব্দটি ব্যবহার করার কারণে এটি মূল্যবান হওয়ার চেয়ে প্রায় আরও বেশি সমস্যা সৃষ্টি করেছিল। বহু বছর পরে জ্যাক মনোদ আমাকে উল্লেখ করেছিলেন যে আমি ডগমা শব্দের সঠিক ব্যবহার বুঝতে পারিনি, যা এমন বিশ্বাস যা সন্দেহ করা যায় না । আমি এটিকে একটি অস্পষ্ট পদ্ধতিতে ধরা দিয়েছি কিন্তু যেহেতু আমি ভেবেছিলাম যে সমস্ত ধর্মীয় বিশ্বাসের ভিত্তি নেই, তাই আমি এই শব্দটি আমার নিজের মতো করেই ব্যবহার করেছি, পৃথিবীর বেশিরভাগের মতো নয়, এবং কেবল এটিকে একটি দুর্দান্ত অনুমানের সাথে প্রয়োগ করেছি simply যদিও এটি প্রশ্রয়যোগ্য, তার সরাসরি প্রত্যক্ষ পরীক্ষামূলক সমর্থন ছিল না। "

একইভাবে, হোরেস ফ্রিল্যান্ড জুডসন সৃষ্টির অষ্টম দিবসে রেকর্ড করেছেন:[১৬]

"আমার মন ছিল, একটি কৌতূহল এমন ধারণা যা সম্পর্কে কোন যুক্তিসঙ্গত প্রমাণ ছিল না । দেখেন তো? "! এবং ক্রিক আনন্দের গর্জন দিল। "আমি শুধু জানেন না মতবাদ কি বোঝানো। এবং আমি ঠিক এটি 'সেন্ট্রাল হাইপোথিসিস' নামে অভিহিত করতে পারি বা আপনি জানেন। যা আমি বলতে চাইছিলাম। ডোগমা ছিল কেবল একটি ক্যাচ বাক্যাংশ। "

ওয়েজম্যান বাধার সাথে তুলনাসম্পাদনা

 
ইন অগাস্ট Weismann এর জারমপ্লাজম তত্ত্ব, বংশগত উপাদান, জারমপ্লাসম, সীমাবদ্ধ হয় জননাঙ্গে । সোম্যাটিক কোষগুলি (দেহের) জারমপ্লাজম থেকে প্রতিটি প্রজন্মে নতুন করে বিকাশ ঘটে। এই কোষগুলির সাথে যা কিছু ঘটুক তা পরবর্তী প্রজন্মকে প্রভাবিত করে না।

১৮৯২ সালে আগস্ট ওয়েজম্যানের প্রস্তাবিত ওয়েজম্যান বাধাটি "অমর" জীবাণু কোষের বংশ ( জীবাণু প্লাজম ) এর মধ্যে পার্থক্য করে যা গেমেটগুলি উত্পাদন করে এবং "ডিসপোজেবল" সোম্যাটিক কোষ। বংশগত তথ্য কেবল জীবাণু কোষ থেকে সোম্যাটিক কোষে চলে আসে (এটি, সোম্যাটিক পরিব্যক্তি উত্তরাধিকার সূত্রে প্রাপ্ত হয় না)। এটি, ডিএনএর ভূমিকা বা কাঠামো আবিষ্কারের আগে, কেন্দ্রীয় নীতির পূর্বাভাস দেয় না, তবে আণবিক পদার্থ সত্ত্বেও জীবনের জিন-কেন্দ্রিক দৃষ্টিভঙ্গির পূর্বাভাস দেয় না। [১৭][১৮]

আরো দেখুনসম্পাদনা

তথ্যসূত্রসম্পাদনা

  1. Leavitt, Sarah A. (জুন ২০১০)। "Deciphering the Genetic Code: Marshall Nirenberg"। Office of NIH History। ২০১৫-০৩-১৭ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০১২-০৩-০২ 
  2. Cobb M (সেপ্টেম্বর ২০১৭)। "60 years ago, Francis Crick changed the logic of biology": e2003243। ডিওআই:10.1371/journal.pbio.2003243পিএমআইডি 28922352পিএমসি 5602739  
  3. "CSHL Archives Repository | On Protein Synthesis"libgallery.cshl.edu (ইংরেজি ভাষায়)। সংগ্রহের তারিখ ২০১৮-১১-১৩ 
  4. Crick FH (১৯৫৮)। "On Protein Synthesis"। Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules। Cambridge University Press। পৃষ্ঠা 138–163। 
  5. Crick, Francis. H. C. (১৯৫৮)। "On protein synthesis"। Symposia on the society for Experimental biology number XII: The Biological Replication of Macromolecules। p. 153। পিএমআইডি 13580867 
  6. Crick F (আগস্ট ১৯৭০)। "Central dogma of molecular biology" (PDF): 561–3। ডিওআই:10.1038/227561a0পিএমআইডি 4913914 
  7. Yao NY, O'Donnell M (জুন ২০১০)। "SnapShot: The replisome": 1088–1088.e1। ডিওআই:10.1016/j.cell.2010.05.042পিএমআইডি 20550941পিএমসি 4007198  
  8. Ahlquist P (মে ২০০২)। "RNA-dependent RNA polymerases, viruses, and RNA silencing": 1270–3। ডিওআই:10.1126/science.1069132পিএমআইডি 12016304 
  9. McCarthy BJ, Holland JJ (সেপ্টেম্বর ১৯৬৫)। "Denatured DNA as a direct template for in vitro protein synthesis": 880–6। ডিওআই:10.1073/pnas.54.3.880পিএমআইডি 4955657পিএমসি 219759  
  10. .Uzawa T, Yamagishi A, Oshima T (জুন ২০০২)। "Polypeptide synthesis directed by DNA as a messenger in cell-free polypeptide synthesis by extreme thermophiles, Thermus thermophilus HB27 and Sulfolobus tokodaii strain 7": 849–53। ডিওআই:10.1093/oxfordjournals.jbchem.a003174পিএমআইডি 12038981 
  11. Bussard AE (আগস্ট ২০০৫)। "A scientific revolution? The prion anomaly may challenge the central dogma of molecular biology": 691–4। ডিওআই:10.1038/sj.embor.7400497পিএমআইডি 16065057পিএমসি 1369155  
  12. Koonin EV (আগস্ট ২০১২)। "Does the central dogma still stand?": 27। ডিওআই:10.1186/1745-6150-7-27পিএমআইডি 22913395পিএমসি 3472225  
  13. Ridley, Rosalind (২০০১)। "What Would Thomas Henry Huxley Have Made of Prion Diseases?"। Molecular Pathology of the Prions। Methods in Molecular Medicine। Humana Press। পৃষ্ঠা 1–16। আইএসবিএন 0-89603-924-2 
  14. Wilkins, Adam S. (জানুয়ারি ২০১২)। "(Review) Evolution: A View from the 21st Century": 423–426। ডিওআই:10.1093/gbe/evs008পিএমসি 3342868  
  15. Moran, Laurence A. (মে–জুন ২০১১)। "(Review) Evolution: A View from the 21st Century": 1–4। ২০১৩-০৯-১৫ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০১২-১০-২৭ 
  16. Judson, Horace Freeland (১৯৯৬)। "Chapter 6: My mind was, that a dogma was an idea for which there was no reasonable evidence. You see?!"। The Eighth Day of Creation: Makers of the Revolution in Biology (25th anniversary সংস্করণ)। Cold Spring Harbor Laboratory Press। আইএসবিএন 978-0-87969-477-7 
  17. De Tiège A, Tanghe K, Braeckman J, Van de Peer Y (জানুয়ারি ২০১৪)। "From DNA- to NA-centrism and the conditions for gene-centrism revisited": 55–69। ডিওআই:10.1007/s10539-013-9393-z 
  18. Turner, J. Scott (২০১৩)। Biology's Second Law: Homeostasis, Purpose, and DesireBeyond Mechanism: Putting Life Back Into Biology। Rowman and Littlefield। পৃষ্ঠা 192। আইএসবিএন 978-0-7391-7436-4 

আরও পড়ুনসম্পাদনা

বাহ্যিক লিঙ্কগুলিসম্পাদনা

[[বিষয়শ্রেণী:কোষীয় প্রক্রিয়া]] [[বিষয়শ্রেণী:আণবিক জীববিজ্ঞান]] [[বিষয়শ্রেণী:অপর্যালোচিত অনুবাদসহ পাতা]]