অপেক্ষক (গণিত)

গাণিতিক ধারণা
(ফাংশন (গণিত) থেকে পুনর্নির্দেশিত)

অপেক্ষক বা ফাংশন(ইংরেজি: Function) একটি গাণিতিক ধারণা যা দুইটি রাশির মধ্যে পারস্পরিক নির্ভরশীলতা প্রকাশ করে। একটি রাশিকে বলা হয় প্রদত্ত রাশি, বা স্বাধীন চলক বা অপেক্ষকটির আর্গুমেন্ট বা ইনপুট। অপরটিকে উৎপাদিত রাশি বা অপেক্ষকের মান বা আউটপুট বলা হয়। অপেক্ষক কোন একটি নির্দিষ্ট সেট থেকে (যেমন-বাস্তব সংখ্যার সেট থেকে) নেয়া প্রতিটি ইনপুট উপাদানের জন্য একটি অনন্য আউটপুটকে সম্পর্কিত করে।

X সেটের একটি উপাদানে Y সেটের কেবল একটি উপাদানের সাথে সম্পর্কযুক্ত থাকবে। X সেটের একাধিক উপাদানের আউটপুট অভিন্ন হতে পারে এবং Y সেটের প্রতিটি উপাদান আউটপুট নাও হতে পারে।
অপেক্ষকের একটি গ্রাফচিত্র,

কোনো অপেক্ষককে বিভিন্ন উপায়ে প্রকাশ করা যায়: সূত্রের সাহায্যে, লেখচিত্রের সাহায্যে, অপেক্ষকটি গণনাকারী অ্যালগোরিদমের সাহায্যে, কিংবা অপেক্ষকটির বৈশিষ্ট্য বর্ণনা করে। কখনও কখনো একটি অপেক্ষককে অন্য এক বা একাধিক অপেক্ষকের সাথে এর সম্পর্কের মাধ্যমে প্রকাশ করা হয় (যেমন- বিপরীত ফাংশন)। বিভিন্ন ব্যবহারিক শাস্ত্রে অপেক্ষকগুলিকে প্রায়শই তাদের মানের সারণি কিংবা সূত্রের মাধ্যমে প্রকাশ করা হয়। তবে সব অপেক্ষককে উপরের সব রকমভাবে প্রকাশ করা যায় না। আসল অপেক্ষক ও একে কীভাবে উপস্থাপন করা হয়েছে বা কল্পনা করা হয়েছে, এ দুইয়ের মধ্যে যথেষ্ট পার্থক্য আছে।[তথ্যসূত্র প্রয়োজন]

অপেক্ষকের সংযোজনসম্পাদনা

অপেক্ষকের সংযোজন (composition) সমগ্র গণিতশাস্ত্রের অন্যতম গুরুত্বপূর্ণ একটি ধারণা: যদি z, y এর একটি অপেক্ষক হয়, যেখানে y, x এর একটি অপেক্ষক, তবে z, x এরও একটি অপেক্ষক হবে। সাধারণভাবে বলা যায় যে, যে সংযুক্ত অপেক্ষকটি প্রথম অপেক্ষকের আউটপুটকে দ্বিতীয় অপেক্ষকের ইনপুট হিসেবে ব্যবহার করে পাওয়া যায়। অপেক্ষকের এই বৈশিষ্ট্যটি অন্যান্য গাণিতিক সংগঠন (যেমন-সংখ্যা বা আকৃতি) থেকে অপেক্ষককে স্বতন্ত্র করেছে এবং অপেক্ষকসমূহের তত্ত্বকে একটি শক্তিশালী কাঠামো প্রদান করেছে।

পরিভাষা ও উদাহরণসম্পাদনা

গণিতে ফাংশন একটি মৌলিক ভূমিকা পালন করে। গণিতের বিমূর্ত শাখা যেমন সেট তত্ত্বে সাধারণ প্রকৃতির ফাংশন নিয়ে আলোচনা করা হয়। এই পদ্ধতিগুলো দৃঢ় নিয়মের উপর প্রতিষ্ঠিত নয় এবং পরিচিত নীতি দ্বারা পরিচালিত নয়। সর্বাধিক বিমূর্ত ক্ষেত্রে ফাংশনের পরিচিত বৈশিষ্ট্য হল এটি একটি ইনপুটের জন্য কেবল একটি আউটপুট দেয়। এমন ফাংশনের জন্য সংখ্যার প্রয়োজন হয় না এবং কোন শব্দের প্রথম অক্ষরও এক্ষেত্রে গ্রহণীয় হতে পারে। বীজগাণিতিক অপারেশনের পরিভাষার মাধ্যমে বীজগণিতে ব্যবহৃত ফাংশনের ব্যাখ্যা দেয়া সম্ভব।

বিভিন্ন প্রকার অপেক্ষকের নাম:

১. সার্বিক ফাংশন ২. এক-এক ফাংশন ৩. সার্বিক ও এক-এক ফাংশন ৪. বিপরীত ফাংশন ৫. অভেদ ফাংশন ৬. ধ্রুবক ফাংশন ৭. সংযোজিত ফাংশন ৮. বহুপদী ফাংশন ৯. মূলদীয় ফাংশন ১০. যোগাশ্রয়ী ফাংশন ১১. দ্বিঘাত ফাংশন ১২. ত্রিকোণমিতিক ফাংশন ১৩. পর্যাবৃত্ত ফাংশন ১৪. বৃত্তীয় ফাংশন ১৫. বিপরীত বৃত্তীয় ফাংশন ১৬. যুগ্ম ফাংশন ১৭. অযুগ্ম ফাংশন ১৮. সূচকীয় ফাংশন ১৯. লগারিদমিক ফাংশন