প্রধান মেনু খুলুন

উইকিপিডিয়া β

সেট তত্ত্বটি গাণিতিক লজিকের একটি শাখা যা সেট করে আলোচনা করে। বাস্তব বা চিন্তা জগতের সু-সাংজ্ঞাইয়িত বস্তুর সমাবেশ বা সংগ্রহকে সেট বলে। যেমেন বাংলা, ইংরেজি ও গণিত বিষয়ে তিনটি পাঠ্যাবইয়ের সেট, প্রথম দশটি বিজোড় সংখ্যার সেট, পূণসংখ্যার সেট, বাস্তাব সংখ্যার সেট ইত্যাদি। প্রায় সব গাণিতিক বস্তুর সংজ্ঞাতে সেট তত্ত্বের ভাষা ব্যবহার করা যেতে পারে।

বিখ্যাত জার্মান গণিতবিদ জর্জ ক্যান্টর (১৮৪৫-১৯১৮) সেট সম্পর্কে প্রথন ধারণা ব্যাখ্যা করেন। তিনি অসীম সেটের ধারণা প্রাদান করে গণিত শাস্ত্রে আলোড়ন সৃষ্টি করেন এবং তার সেটের ধারণা সেট তত্ত্ব (Set Theory) নামে পরিচিত।

পরিচ্ছেদসমূহ

আবিষ্কারসম্পাদনা

বিখ্যাত জার্মান গণিতবিদ জর্জ ক্যান্টর (১৮৪৫-১৯১৮) সেটতত্ত্বের প্রবর্তক। বর্তমানে অনেক আধুনিক উন্নত গণিত কাজের ভিত্তি হিসেবে এই সেট তত্ত্ব ব্যবহৃত হয় ।

সেট কীসম্পাদনা

কোনো বস্তু, সংখ্যা, চিন্তা ইত্যাদির সমারোহকে বলা হয় সেট। সেটকে সাধারণত ইংরেজি বর্ণমালার বড় হাতের অক্ষর A,B,C.............X,Y,Z দ্বারা প্রকাশ করা হয়।

যেমন, 2,4,6 সংখ্যার তিনটির সেট A = {2,4,6}

সেটের প্রত্যেক বস্ত বা সদস্যকে সেটের উপাদান (Element) বলা হয়। যেমন, B = {a,b} হলে, B সেটের উ্পাদান a এবং b ; উপাদান প্রকাশের চিহ্ন ' '।

a   B এবং পড়া হয় a,B এর সদস্য (a belongs to B)
b   B এবং পড়া হয় b,B এর সদস্য (b belongs to B)

উপরে B সেটে c উ্পাদান নেই।

c   B এবং পড়া হয় c,B এর সদস্য নয় (c does not belongs to B)

সেটের প্রকারভেদসম্পাদনা

সেটকে দুই পদ্ধতিতে প্রকাশ করা হয়। যথাঃ (১) তালিকা পদ্ধতি (Roster Method বা Tabular Method) এবং (২) সেট গঠন পদ্ধতি (Set Builder Method)।

(১) তালিকা পদ্ধতিসম্পাদনা

এ পদ্ধতিতে সেটের সকল উ্পাদান সুনির্দিষ্টভাবে উল্লেখ করে দ্বিতীয় বন্ধনী { } এর মধ্যে আবদ্ধ করা হয় এবং একাধিক উপাদান থাকলে 'কমা' ব্যবহার করে উপদান গুলোকে আলাদা করা হয়।

যেমন

A = {a,b}, B = {2,4,6}
C = {সাগর, তিশা, নিলয়}

ইত্যাদি।

(২) সেট গঠন পদ্ধতিসম্পাদনা

এ পদ্ধতিতে সেটের সকল উপাদান সুনির্দিষ্টভাবে উল্লেখ না করে উ্পাদান নির্ধারণের জন্য সধারণ র্ধমের উল্লেখ থাকে।

যেমন

A = {X : X স্বাভাবিক বিজোড় সংখ্যা}
B = {X : X, 28 এর গুণনীয়ক} 

ইত্যাদি।

এখানে, ':' দ্বারা 'এরুপ যেন' বা সংক্ষেপে 'যেন' (such that) বোঝায়। যেহেতু এ পদ্ধতিতে সেটের উপাদান নির্ধারণের জন্য শর্ত বা নিয়ম (Rule) দেওয়া থাকে এ জন্য এ পদ্ধতিকে Rule Method ও বলা হয়।

সেটের সদস্যপদসম্পাদনা

সসীম সেটঃ যে সেটের উপাদান সংখ্যা গণনা করে নির্ধারণ করা যায়, একে সসীম সেট বলে। যেমন, D = {x,y,z}, E = {3,6,9........,60}, F = {X : X মৌলিক সংখ্যা এবং 30<x<70} ইত্যাদি সসীম সেট। এখানে, D সেটে 3 টি উপাদান, E সেটে 20 টি উপাদান এবং F সেটে 9 টি উপাদান আছে।

অসীম সেটঃ যে সেটের উপাদান সংখ্যা গণনা করে নির্ধারণ করা যায় না, একে অসীম সেট বলে। যেমন, A = {x:x বিজোড় স্বাভাবিক সংখ্যা}, স্বাভাবিক সংখ্যার সেট N = {1,2,3,4,5,6,7...........}, পূর্ণসংখ্যার সেট Z = {..........-3,-2,-1,0,1,2,3............} ইত্যাদি।

ফাকা সেটঃ যে সেটের কোনো উপাদান নেই একে ফাকা সেট বলে। ফাকা সেটকে { } বা   দ্বারা প্রকাশ করা হয়। যেমন, A = {x N:10<x<11 }, N = {X   N:X মৌলিক সংখ্যা এবং 23<X<29} ইত্যাদি।

সেটের সমতাঃ দুই বা ততোধিক সেটের উপাদান একই হলে, এদেরকে সেটের সমতা বলা হয়। যেমন, A = {3,5,7} এবং B = {5,3,7} দুইটি সমান সেট এবং A=B চিহ্ন দ্বারা লেখা হয়। আবার A = {3,5,7}, B = {5,3,3,7} এবং C = {7,7,3,5,5} হলে A,B ও C সেট তিনটি সমতা বোঝায়। আর্থাং, A = B = C

লক্ষণীয়, সেটের উপাদান গুলোর ক্রম বদলালে বা কোন উপাদান পুনরাবৃত্তি করলে সেটের কোন পরিবর্তন হয় না।

ভেনচিত্রসম্পাদনা

জন ভেন (১৮৩৪-১৮৮৩) সেটের কার্যবিধি চিত্রের সাহায্যে প্রবর্তন করেন। এতে বিবেচনাধীন সেটগুলোকে সমতলে অবস্থিত বিভিন্ন আকারের জ্যামিতি চিত্র যেমন আয়তাকার ক্ষেত্র, বৃত্র এবং ত্রিভুজাকার ক্ষেত্র ব্যবহার করা হয়। জন ভেনর নামনুসারে চিত্রগুলো ভেনচিত্র নামে পরিচিত।

ভেন ডায়াগ্রাম দিয়ে সেট থিওরির অনেক সমস্যার সমাধান করা যায়। একটি ইউনিভার্সাল সেট কে প্রকাশ করা হয় আয়তক্ষেত্র দিয়ে এবং এই সেটের সাব-সেট গুলোকে প্রকাশ করা হয় বৃত্ত দিয়ে। এই চিত্রে ছায়া দেওয়া অংশ দিয়ে প্রকাশ করা হয়েছে A-এর কমপ্লিমেন্ট অর্থ্যাৎ  । এছাড়াও বৃত্তের ভিতরে বৃত্ত দিয়ে সাব-সেট গুলোকে প্রকাশ করা হয়। যেমন  

উপসেটসম্পাদনা

A = {a,b} একটি সেট। A সেটের উপাদান থেকে {a,b}, {a}, {b} সেটগুলো গঠন করা যায়। আবার, কোন উপাদান না দিয়ে   সেট গঠন করা যায়।

এখানে, গঠিত {a,b}, {a}, {b},   প্রত্যেকটি A সেটের উপসেট।

সুতরাং কোনো সেট থেকে যতগুলো সেট গঠন করা যায়, এদের প্রত্যেকটি সেট ঐ সেটের উপসেট বলা হয়। উপসেটের চিহ্ন  । যদি B সেট A সেটের উপসেট হয় তবে পড়া হয়। B,A এর উপসেট আথবা B is a subset of A. উপরের উপসেট গুলোরমধ্যে {a,b} সেট A সেটের সমান।

  প্রত্যেকটি সেট নিজের উপসেট।

আবার, যেকোন সেট থেকে   সেট গঠন করা যায়।

    যেকোন সেটের উপসেট।

P = {1,2,3} এর Q = {1,2,3} এবং R = {1,3} দুইটি উপসেট। আবার, P = Q
  Q   P এবং R   P

প্রকৃত উপসেটসম্পাদনা

কোনো সেট থেকে গঠিত উপসেটের মধ্যে যে উপসেটগুলোর উপাদান সংখ্যা প্রদ্রত্ত সেটের সংখ্যা অপেক্ষা কম এদেরকে প্রকৃত উপসেট বলে। প্রতিটি সেটের অন্তত দুটি সাব-সেট রয়েছে, একটি হলো সেটটি নিজেই এবং অপরটি হলো শূণ্য বা ফাকা সেট।

যেমন, A = {3,4,5,6} এবং B = {3,5} দুইটি সেট।

এখানে, B এর সব উপাদান A সেটে বিদ্যমান।

  B,A সেটের একটি উপসেট।

আবার, B সেটের উপাদান সংখ্যা A সেটের উপাদান সংখ্যার চেয়ে কম।

  B,A এর একটি প্রকৃত উপসেট এবং B   A লিখে প্রকাশ করা হয়।

সার্বিক সেটসম্পাদনা

আলোচনা সংশ্লিষ্ট সকল সেট একটি নির্দিষ্ট সেটের উপসেট। যেমন A = {x,y} সেটটি B = {x,y,z} এর একটি উপসেট, এখানে, B সেটকে A সেটের সাপেক্ষে সার্বিক সেট বলে।

সুতরাং আলোচনা সংশ্লিষ্ট সকল সেট যদি একটি নির্দিষ্ট সেটের উপসেট হয় তবে ঐ নির্দিষ্ট সেট এর উপসেটগূলো সাপেক্ষে সার্বিক সেট বলে। সার্বিক সেটকে সাধারণত U দ্বারা প্রকাশ করা হয়। তবে অন্য প্রতীকের সাহায়্যেও সার্বিক সেট প্রকাশ করা যায়।

যেমন, সকল জোড় স্বাভাবিক সংখ্যার সেট C = {2,4,6.........} এবং সকল স্বাভাবিক সংখ্যার সেট N ={1,2,3,4......} হলে, C সেটের সাপেক্ষে সার্বিক সেট হবে N .

সেটের অন্তরসম্পাদনা

মনে করি, A = {1,2,3,4,5} এবং B = {3,5} । সেট A থেকে সেট B এর উপাদানগুলো বাদ দিলে যে সেটটি হয় তা {1,2,4} এবং লেখা হয় A\B বা A-B = {1,2,3,4,5} - {3,5} = {1,2,4} ।

সুতরাং, কোনো সেট থেকে অন্য একটি সেট বাদ দিলে যে সেট গঠিত হয় তাকে বাদ সেট বলে।

পূরক সেটসম্পাদনা

যদি A সেট সার্বিক সেট U এর একটি উপসেট হয় তবে A এর উপাদানগুলো বাদে সার্বিক সেটের অন্য সকল উপাদান নিয়ে গঠিত সেটকে A এর পূরক সেট বলে। A এর পূরক সেটকে   বা Aʿ দ্বারা প্রকাশ করা হয়। গণিতিকভাবে   = U\A .

U = {1,2,3,4,6,7} এবং A = {2,4,6,7}
  =  U\A = {1,2,3,4,6,7} \ {2,4,6,7} = {1,3,5}

সংযোগ ও ছেদসম্পাদনা

সংযোগ সেটঃ

দুই বা ততোধিক সেটের সকল উপাদান নিয়ে গঠিত সেটকে সংযোগ সেট বলা হয়। মনে করি, A ও B দুইটি সেট। A ও B সেটের সংযোগকে A   B দ্বারা প্রকাশ করা হয় এবং পড়া হয় A সংযোগ B অথবা A Union B । সেট গঠন পদ্ধতিতে A   B = {x:x   A অথবা x   B} .

C = {3,4,5} এবং D = {4,6,8} হলে,
C   D = {3,4,5}   {4,6,8} = {3,4,5,6,8}

ছেদ সেটঃ

দুই বা ততোধিক সেটের সাধারণ উপাদান নিয়ে গঠিত সেটকে ছেদ সেট বলা হয়। মনে করি, A ও B দুইটি সেট। A ও B এর ছেদ সেটকে A   B দ্বারা প্রকাশ করা হয় এবং পড়া হয় A ছেদ B অথবা A intersection B । সেট গঠন পদ্ধতিতে A   B = {x:x   A এবং x   B} .

C = {3,4,5,6} এবং D = {4,6,8} হলে,
C   D = {3,4,5,6}   {4,6,8} = {4,6}

নিশ্ছেদ সেট:

দুইটি সেটের মধ্যে যদি কোনো সাধারণ উপাদান না থাকে তবে সেট দুইটি পরস্পর নিশ্ছেদ সেট। মনে করি, A ও B দুইটি সেট। A   B =   হলে A ও B পরস্পর নিশ্ছেদ সেট হবে।

A = {3,4,5} এবং B = {6,8} হলে,
A   B = {3,4,5}   {6,8} =  

শক্তি সেটসম্পাদনা

মনে করি, A একটি সেট। A সেটের যতগুলো উপসেট হয় তাদের সেটকে A সেটের শক্তি সেট বা পাওয়ার সেট বলে এবং লিখা হয় P(A). A এর উপাদান সংখ্যা n হলে, P(A) এর উপাদান সংখ্যা 2 .

ক্রমজোড়সম্পাদনা

অষ্টম শ্রেণির আমেনা এবং সুমেনা বার্ষিক পরীক্ষায় মেধা তালিকায় যথাক্রমে প্রথম ও দ্বিতীয় হল। মেধা অনুসারে তাদেরকে (আমেনা, সুমেনা) জোড়া আকারে লেখা যায়। এরুপ নির্দিষ্ট করে দেওয়া জোড়া একটি ক্রমজোড়।

সুতরাং, একজোড়া উপাদানের মধ্যে কোনটি প্রথম অবস্থানে আর কোনটি দ্বিতীয় অবস্থানে থাকবে, তা নির্দিষ্ট করে জোড়া আকারে প্রকাশকে ক্রমজোড় বলা হয়।

যদি কোনো ক্রমজোড়ের প্রথম উপাদান বা পদ x এবং দ্বিতীয় উপাদান বা পদ y হয়, তবে ক্রমজোড়টি (x,y) হবে। ক্রমজোড় (x,y) ও (a,b) বা সমান (x,y) = (a,b) হবে যদি x = a এবং y = b হয়।

কার্তেসীয় গুণজসম্পাদনা

মনে করি, A ও B যেকোন দুইটি সেট। A ও B সেটের সকল ক্রমজোড়ের সেটই হলো কার্তেসীয় গুণজ সেট। সুতরাং A ও B কার্তেসীয় গুণজের সেট হল A × B

সেট গঠন পদ্ধাতিতে,

A × B = {(x,y);x   A এবং y   B}

অন্বয়সম্পাদনা

একটি সেটের কোন কোন সদস্যের সঙ্গে অপর একটি সেটের অথবা একই সেটের কোন কোন সসস্যের সম্পর্কেক অন্বয় বলে।

ফাংশনসম্পাদনা

যদি দুইটি চলরাশি x ও y এরূপভাবে সম্পর্কযুক্ত হয় যে, x এর যেকোন মানের জন্য y এরও অনুরূপ একটি মান পাওয়া যায়, তবে y কে x এর ফাংশন বলে। যেমন, y = 2x +5 এখানে, x স্বাধীন চলক এবং y অধীন চলক। ফাংশনকে সাধারণত ' ' দ্বারা প্রকাশ করা হয়।

ডোমেন ও রেঞ্জসম্পাদনা

মনে করি, A সেট থেকে B সেটে S একটি অন্বয় অর্থাৎ S   A   B। S এর অন্ত্রর্ভুক্ত ক্রমজোড়্গুলোর প্রথম উপাদানসমূহের সেটকে S এর ডোমেন এবং দ্বিতীয় উপাদানসমূহের সেটকে S এর রেঞ্জ বলে। S এর ডোমেনকে ডোম S এবং রেঞ্জকে রেঞ্জ S লিখে প্রকাশ করা হয়।

তথ্যসূত্রসম্পাদনা

আরও পড়ুনসম্পাদনা

  • Devlin, Keith, 1993. The Joy of Sets (2nd ed.). Springer Verlag,
  • Ferreirós, Jose, 2007 (1999). Labyrinth of Thought: A history of set theory and its role in modern mathematics. Basel, Birkhäuser.
  • Johnson, Philip, 1972. A History of Set Theory. Prindle, Weber & Schmidt .
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. North-Holland.
  • Potter, Michael, 2004. Set Theory and Its Philosophy: A Critical Introduction. Oxford University Press.
  • Tiles, Mary, 2004 (1989). The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise. Dover Publications.

বহিঃসংযোগসম্পাদনা