অয়লারের ধ্রুবক

গাণিতিক ধ্রুবক

e একটি গাণিতিক ধ্রুবক, যা অয়লারের সংখ্যা নামে পরিচিত। যার সাংখ্যিক মান হলো 2.718 281 828 45...[১]। উক্ত সংখ্যাটি বিভিন্ন বৈশিষ্ট্য সম্পন্ন। এটি প্রাকৃতিক লগারিদমের ভিত্তি। এটি (1 + 1/n)n এর সীমা, যখন n এর মান অসীমের সন্নিকটবর্তী। এটি চক্রবৃদ্ধি মুনাফা অধ্যয়নে এটি ব্যবহৃত হয়। এটির কিছু কিছু অসীম ধারার যোগফল নির্ণয়েও কাজে লাগে।

ইতিহাসসম্পাদনা

স্কটিশ গণিতজ্ঞ জন নেপিয়ার ১৬১৮ খ্রিস্টাব্দে উক্ত ধ্রুবকটি সম্পর্কে উল্লেখ করেন। তবে ধ্রুবকটি আবিষ্কার ও সংজ্ঞায়িত করার কৃতিত্ব দেওয়া হয় জ্যাকোব বার্নোলিকে। যিনি নিম্নোক্ত রাশিটির মান বের করার চেষ্টা করছিলেন।

 

সংজ্ঞাসম্পাদনা

 

অর্থাৎ e হলো প্রদত্ত রাশিটির সীমা, যখন n এর মান অসীম পর্যন্ত বৃদ্ধি পায়। অন্য কথায়, n এর মান যত বৃদ্ধি পায়, রাশিটির মান তত e এর কাছাকাছি যেতে থাকে।

মান নির্ণয়সম্পাদনা

 

উক্ত অসীম ধারাটির সমষ্টি e এর সমান।[২]

প্রমাণটাও সহজ, প্যাসক্যালের দ্বিপদী উপপাদ্য অনুযায়ী,

 

সুতরাং, যখন  , তখন,

 

যার সীমা হলো e (কারণ n এর মান যত বৃদ্ধি পায়,   এর মান তত শুন্যের দিকে কমতে থাকে)।

সূচক ফাংশনসম্পাদনা

 
  এর চরম মান x = e এ ঘটে

  রাশিটিকে x এর ফাংশন হিসেবে ধরে একে সূচক ফাংশন বলা হয়। একে  ও লেখা হয়।

ফাংশনটিকে একটি অসীম ধারা হিসেবে লেখা যায় (এই ধারাটি কোন নির্দিষ্ট x এর জন্য ফাংশনটির মান নির্ণয়েও ব্যবহৃত হয়),

 

অয়লারের অভেদসম্পাদনা

  সমীকরণটি e কে 1,   এবং i এর মতন গুরুত্বপূর্ণ সংখ্যার সাথে সম্পর্কিত করে। ১৭৩৭ সালে অয়লার[৩] দেখান যে, e একটি অমূলদ সংখ্যা। ১৮৭৩ সালে হেরমিট প্রমাণ করেন যে, e একটি তুরীয় সংখ্যা(  পাই এর মত)

তথ্যসূত্রসম্পাদনা

  1. বাংলা একাডেমী বিজ্ঞান বিশ্বকোষ ২য় খন্ড। বাংলা একাডেমী। পৃষ্ঠা ১। আইএসবিএন 984-07-5373-8 
  2. Encyclopedic Dictionary of Mathematics 142.D
  3. Sondow, Jonathan। "e"Wolfram MathworldWolfram Research। সংগ্রহের তারিখ ১০ মে ২০১১ 


বহিঃসংযোগসম্পাদনা