ক্রেমারের নিয়ম

গণিতের সমস্যা সমাধানের বিশেষ পদ্ধতি

ক্রেমারের নিয়ম হলো দুই বা ততোধিক চলরাশি বিশিষ্ট একঘাত সহসমীকরণ সমাধানের একটি বিশেষ পদ্ধতি। এই পদ্ধতিতে নির্ণায়ক বা ডিটারমিন্যান্টকে কাজে লাগিয়ে সহসমীকরণগুলির সমাধান করা হয়।[] গণিতবিদ গাব্রিয়েল ক্রেমার এই পদ্ধতি আবিষ্কার করেন, তাই তার নামানুসারে এর নামকরণ করা হয়েছে। যদিও গণিতজ্ঞ ম্যাকলরিন এই পদ্ধতির একটি হালকা আভাস ইতিপূর্বেই দিয়েছিলেন।

দুই চলববিশিষ্ট সমীকরণে ক্রেমারের নিয়মের ব্যবহার
ক্র্যামারের নিয়মের জ্যামিতিক ব্যাখ্যা

বর্ণনা

সম্পাদনা

দুই বা ততোধিক চলকবিশিষ্ট রৈখিক সহসমীকরণ সমাধানের জন্য এই পদ্ধতি কার্যকরী।[]

ধরি,তিনটি পৃথক চলক x , y ও z দ্বারা গঠিত নিচের সহসমীকরণ তিনটিকে সমাধান করতে হবে:

  1.  
  2.  
  3.  

এর জন্য প্রথমে তিনটি সমীকরণে উপস্থিত x, y ও z চলকের সহগ দ্বারা গঠিত নির্ণায়ক সমাধান করতে হবে।

 

অতঃপর x-এর সহগ দ্বারা গঠিত স্তম্ভ-টিকে d, d', d" দ্বারা প্রতিস্থাপিত করে পাওয়া যায়,

 

এবার একইভাবে,

 

 

এখন,চলরাশি তিনটির নির্ণেয় সমাধান হয়,

  •  
  •  
  •  

এইভাবেই ক্রেমারের নিয়মকে কাজে লাগিয়ে দুই , চার বা তার বেশি সংখ্যক চলরাশিযুক্ত সহসমীকরণের সমাধান করা সম্ভব।


সমাধান

সম্পাদনা
  • যদি Δ≠0 হয় তবে Δ123-এর মধ্য থেকে এক বা একাধিক শূণ্য হলেও তিনটি চলের একটি নির্দিষ্ট বাস্তব মান পাওয়া যাবে; একে সংজ্ঞাত আকারের সমীকরণ বলা হয়ে থাকে।
  • যদি Δ=Δ123=0 হয় তবে তিনটি চলেরই অসংখ্য সমাধান পাওয়া যাবে।
  • যদি Δ=0 হয় এবং Δ123-এর মধ্যে কমপক্ষে একটির মান অশূণ্য হয়, সেক্ষেত্রে চলগুলির কোনো সমাধান পাওয়া যাবে না।

শেষ দুটি ক্ষেত্রের সমীকরণকে অসংজ্ঞাত আকারের সমীকরণ বলা হয়।[]

সীমাবদ্ধতা

সম্পাদনা

সমসত্ত্ব ও অসমসত্ত্ব সহসমীকরণ

সম্পাদনা

যখন Δ123=0 হবে,তখন সহসমীকরণতিনটিকে সমসত্ত্ব এবং উপরিউক্ত সম্পর্ক সিদ্ধ না হলে সহসমীকরণত্রয়কে অসমসত্ত্ব সহসমীকরণ বলা হয়।[]

তথ্যসূত্র

সম্পাদনা
  1. https://www.purplemath.com/index.htm
  2. https://www.ajol.info/index.php/jfas/article/viewFile/165383/154840
  3. ছায়া গণিত,দ্বিতীয় খন্ড
  4. উচ্চতর গণিত,সাঁতরা পাবলিকেশন [দ্বাদশ শ্রেণী]

আরও পড়ুন

সম্পাদনা