কোলাজ অনুমান

কোলাজ

লোথার কোলাজ ১৯৩৭ সালে তার ডক্টরেট ডিগ্রি নেওয়ার দুই বছর পর কোলাজ অনুমান টি প্রস্তাব করেন।[১] এতে প্রশ্ন করা হয়েছে, একটা নির্দিষ্ট অনুক্রম কি সবসময় একই ভাবে শেষ হবে কিনা, অনুক্রমটির প্রথম সংখ্যাটি যাই হোক না কেন। কখনো কখনো একে সমস্যা বা উলামের অনুমান বা কাকুতানির অনুমানও বলা হয়।

কোলাজ মানচিত্রের নীচে স্বল্প সংখ্যার কক্ষপথ দেখানো গ্রাফ। কোলাজ অনুমানে বলা হয়েছে যে সমস্ত পথ অবশেষে ১ এ পৌঁছে দেয়।

পল এরডশ এই অনুমানটি সম্পর্কে বলেছেন, এ ধরনের সমস্যার জন্য গণিত এখনো প্রস্তুত হয় নি! [২]তিনি ৫০০ ডলার ঘোষণা করেছেন এই সমস্যাটির জন্য।[৩]

সমস্যার বর্ণনাসম্পাদনা

যেকোন ধনাত্মক পূর্ণ সংখ্যার জন্য নিচের অপারেশন দুইটি বিবেচনা করা যাক,

  • সংখ্যাটি যদি জোড় হয়, তবে তাকে 2 দিয়ে ভাগ কর।
  • সংখ্যাটি যদি বিজোড় হয়, তবে তাকে 3 দিয়ে গুণ করে 1 যোগ কর।

গাণিতিক ভাষায় বলতে গেলে,

একটা ফাংশন f এভাবে সংজ্ঞায়িত করা হয়েছে,

 

এখন এই অপারেশনটি পুনরাবৃত্তি করে একটা অনুক্রম তৈরি করা যাক। অনুক্রমটির প্রথম সংখ্যা যেকোন ধনাত্মক পূর্ণ সংখ্যা n

 

কোলাজ অনুমান যা বলছে, তা হল এই কার্যপ্রণালী অবশেষে 1 এ গিয়ে পৌঁছুবে, শুরুতে যে সংখ্যাই বিবেচনা করা হোক না কেন

গণিতের ভাষায় বলতে গেলে,

 

অনুমানটি মিথ্যা হলে, এমন কোন সূচনা সংখ্যা পাওয়া যাবে, যার জন্য এমন একটা চক্রাকার অনুক্রম পাওয়া যাবে যেখানে 1 অনুপস্থিত, অথবা অনুক্রমটি সীমাহীন ভাবে বাড়তে থাকেবে। কিন্তু এ জাতীয় কোন অনুক্রমের সন্ধান পাওয়া যায়নি।

উদাহরণসম্পাদনা

উদাহরণস্বরূপ   হলে যে অনুক্রম পাওয়া যায় তা হল- 12, 6, 3, 10, 5, 16, 8, 4, 2, 1.

  নিলে ১ এ পৌছাতে আরেকটু বেশি সময় লাগে। 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

  হলে ১১১ টি পদ তৈরি হয় এবং ১ এ পৌছানোর পূর্বে সর্বোচ্চ ৯২৩২ তে পৌছে।

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

তথ্যসূত্রসম্পাদনা

  1. Lothar Collatz। Scotland: St Andrews University School of Mathematics and Statistics। ২০০৬। 
  2. Unsolved problems in number theory (3rd ed.)। Springer-Verlag। ২০০৪। পৃষ্ঠা 336–337। আইএসবিএন 0-387-20860-7 
  3. "Don't try to solve these problems"JSTOR