সম-অবিচ্ছিন্ন চিত্রণ

টপোগাণিতিক সমতুলতা এখানে পুনর্নির্দেশ করে।

গণিতের টপোগণিত শাখায় সম-অবচ্ছিন্ন চিত্রণ (ইংরেজি ভাষায়: Homeomorphism বা Topological isomorphism) বলতে দুইটি টপোজগতের মধ্যে এদের টপোগাণিতিক ধর্মের সাপেক্ষে এক বিশেষ ধরনের সমচিত্রণকে বোঝায়। দুইটি টপোজগতের মধ্যে সম-অবিচ্ছিন্ন চিত্রণ সম্ভব হলে বলা হয়, এই দুইটি সম-অবিচ্ছিন্নভাবে চিত্রণযোগ্য (homeomorphic)। অর্থাৎ টপোগাণিতিক দৃষ্টিকোণ থেকে এরা অভিন্ন।[১][২]

একটি কফি মগ ও ডোনাটের মধ্যে অবিচ্ছিন্ন রূপবিকার দেখাচ্ছে যে এরা সম-অবিচ্ছিন্নভাবে চিত্রণযোগ্য।

সাধারণভাবে বলতে গেলে টপোজগৎ হচ্ছে এক ধরনের জ্যামিতিক বস্তু, আর সম-অবিচ্ছিন্ন চিত্রণ হচ্ছে বস্তুটিকে অবিচ্ছিন্নভাবে টেনে-মুচড়ে নতুন আকারের বস্তুতে রূপ দেয়া। সুতরাং একটি বর্গ এবং একটি বৃত্ত সম-অবিচ্ছিন্নভাবে চিত্রণযোগ্য। টপোগণিতবিদদের নিয়ে বহুল প্রচলিত একটি ঠাট্টা আছে যে তারা কফি কাপ থেকে ডোনাট পৃথক করতে পারেন না, কেননা তাত্ত্বিকভাবে একটি ডোনাটকে টেনে মুচড়ে একটি কফি কাপের আকার দেয়া সম্ভব (ছবিতে দেখুন)।

  1. "Analysis Situs selon Poincaré (1895)"serge.mehl.free.fr। ১১ জুন ২০১৬ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৯ এপ্রিল ২০১৮ 
  2. Gamelin, T. W.; Greene, R. E. (১৯৯৯)। Introduction to Topology। Courier। পৃষ্ঠা 67।