রৈখিক ফাংশনাল হলো কোন ভেক্টর স্থান থেকে ঐ ভেক্টর স্থানের ফীল্ডে কোন রৈখিক ফাংশন। বিভিন্ন পরিস্থিতিতে একে রৈখিক ফর্ম, বা কো-ভেক্টরও বলা হয়।

তিনটি ভিন্ন লিনিয়ার ফাংশন গ্রাফে প্রদর্শিত হয়

কোন ভেক্টর স্থান এর ফীল্ড যদি হয়, তবে কোন ফাংশন একটি রৈখিক ফাংশনাল হবে যদি তা রৈখিক হয়, অর্থাৎ হয়, যেখানে দুইটি ভেক্টর। লক্ষ্যণীয়, ফাংশনটি নেয় একটি ভেক্টর, ফেরত দেয় একটি স্কেলার

উদাহরণসম্পাদনা

  • ইউক্লিডীয় স্থানে, কোন নির্দিষ্ট ভেক্টর   এর সাথে অন্তর্নিহিত গুণন বা ডট গুণন প্রক্রিয়াটি একটি রৈখিক ফাংশনাল। এই ফাংশনালটিকে অপর একটি ভেক্টর   এর উপর প্রয়োগ করলে ফলাফল হয়  
  •   এর উপর সংজ্ঞায়িত অবিচ্ছিন্ন ফাংশন-দের ভেক্টর স্থানে সমাকলন একটি ফাংশনাল। অর্থাৎ
 

একটি ফাংশনাল যা একটি অবিচ্ছিন্ন ফাংশন   নেয় এবং   এর উপর তার সমাকলিত মান ফেরত দেয়।

দ্বৈত ভেক্টর স্থানসম্পাদনা

রৈখিক ফাংশনালরা নিজেরাও একটি ভেক্টর স্থান গঠন করে (একই ফীল্ডে) যাকে মূল ভেক্টর স্থানের দ্বৈত ভেক্টর স্থান বলা হয়। ক্যাটাগরি তত্ত্বের ভাষায় এই স্থানটির নাম  

ব্যবহারসম্পাদনা

  • কোয়ান্টাম বলবিদ্যায় আগ্রহের ভেক্টর স্থান হলো একটি হিলবার্ট স্থান, যা স্বভাবতই একটি ভেক্টর স্থান। ডিরাকের "ব্রা-কেট" পদ্ধতিতে কোন সিস্টেমের অবস্থা ভেক্টরকে প্রকাশ করা হয় একটি কেট (যেমন  ) এর মাধ্যমে, এবং সম্ভাবনা হিসাব করতে ঐ স্থানের দ্বৈত স্থানের কোন ফাংশনালকে একটি ব্রা (যেমন  ) হিসাবে প্রকাশ করে তার উপর প্রয়োগ করা হয় (ফলাফল, একটি "ব্রাকেট",  , একটি জটিল সংখ্যা, যার পরম মানের বর্গ সম্ভাবনার সমানুপাতিক)।