"টেলর ধারা" পাতাটির দুইটি সংশোধিত সংস্করণের মধ্যে পার্থক্য

সম্পাদনা সারাংশ নেই
[[Image:sintay.svg|thumb|টেইলর বহুপদীর ডিগ্রি বৃদ্ধি পাবার সাথে সাথে এটি ফাংশনের সঠিক মানের দিকে অগ্রসর হয়, এই ছবিতে <font color=#333333><math>\sin x</math></font> (কালোতে) and Taylor approximations, polynomials of degree এবং টেইলর ধারার আসন্নীকৃত মান,যখন ডিগ্রি<font color=#b30000>1</font>, <font color=#00b300>3</font>, <font color=#0000b3>5</font>, <font color=#b3b300>7</font>, <font color=#00b3b3>9</font>, <font color=#b300b3>11</font> and <font color=#888888>13</font>.]]
[[Image:Exp series.gif|right|thumb|[[সূচকীয় ফাংশন]] (নীল রঙ-এ), এবং ০-এ টেইলরের ধারার প্রথম ''n''+1 পদের যোগফল (লাল রং-এ)।]]
 
[[গণিত|গণিতে]] টেইলর ধারা হল কোন ফাংশনের অসীমতক সমষ্টির প্রকাশ, যা একটি নির্দিষ্ট বিন্দুতে এর অন্তরকের মান থেকে নির্ণয় করা হয়। এ ধারাটির নামকরণ করা হয়েছে [[ইংরেজ]] গণিতবিদ [[ব্রুক টেইলর|ব্রুক টেইলরের]] নামানুসারে। ধারাটি যদি শূণ্য কেন্দ্র করে নির্ণীত হয়, তখন একে '''ম্যাকলরিন ধারা''' বলা হয়। সাধারণত হিসাব করার সময় টেইলর সিরিজের সসীমসংখ্যক পদের সমষ্টি নেয়া হয়। টেইলর ধারাকে টেইলর বহুপদীর সীমা বিবেচনা করা যেতে পারে।
 
== সংজ্ঞা ==
১,৬১১টি

সম্পাদনা