"মহাবৃত্ত" পাতাটির দুইটি সংশোধিত সংস্করণের মধ্যে পার্থক্য

বানান সংশোধন
ট্যাগ: মোবাইল সম্পাদনা মোবাইল ওয়েব সম্পাদনা দৃশ্যমান সম্পাদনা
(বানান সংশোধন)
একটি [[গোলক|গোলকের]] [[কেন্দ্র (জ্যামিতি)|কেন্দ্রগামী]] যে কোন [[সমতল]] এবং গোলক-পৃষ্ঠের ছেদ রেখাই '''মহাবৃত্ত''' বা '''গুরুবৃত্ত''' বা '''বৃহৎ বৃত্ত''' যাকে ইংরেজিতে '''great cicle''' বা '''orthodrome''' বলা হয়। অন্যভাবে বলা যায়, কোন গোলকের পৃষ্ঠে যে সর্ব বৃহৎ [[বৃত্ত]] আঁকা সম্ভব সেটাই মহাবৃত্ত। আবার, একটি গোলককে তার কেন্দ্রগামী যে কোন [[অক্ষ|অক্ষের]] লম্বদিকে সমান পুরুত্বের অসংখ্য পাতলা গোলাকার চাকতিতে কর্তন করা হলে যে চাকতিটির ব্যাসার্ধ অন্য সব চাকতির চেয়ে বড় হবে অর্থাৎ যে চাকতিটির কেন্দ্র গোলকটির কেন্দ্র হবে সেই চাকতিটির প্রান্ত রেখাই ([[পরিধি]]) মহাবৃত্ত। একটি গোলকের পৃষ্ঠে অসীম সংখ্যক মহাবৃত্ত আঁকা সম্ভব। গোলকের [[কেন্দ্র (জ্যামিতি)|কেন্দ্র]] ও [[ব্যাসার্ধ|ব্যাসার্ধই]] গোলকটির যে কোন মহাবৃত্তের কেন্দ্র ও [[ব্যাসার্ধ]]। [[ইউক্লিডীয় স্থান|ইউক্লিডীয় ত্রিমাত্রিক স্থানে]] প্রতিটি বৃত্তই কোন না কোন গোলকের মহাবৃত্ত। মহাবৃত্তের শর্ত দুটি রয়েছে। যথা: <math>(i)</math> এটি গোলককে সমান দুটি গোলার্ধে বিভক্ত করে এবং <math>(ii)</math> বিভাজক তল অবশ্যই গোলকের কেন্দ্রগামী।
 
কোন গোলকের পৃষ্ঠের একটি বিন্দু থেকে সরল রেখা বরাবর যাত্রা শুরু করে এর কেন্দ্রের মধ্য দিয়ে গমন করলে সরল রেখাটি গোলকের অপর পৃষ্ঠকে যে বিন্দুতে ছেদ করে তাই পূর্বোক্ত বিন্দুর বিপরীত-পৃষ্ঠ বিন্দু বা [[গোলকের প্রতিপাদ বিন্দু|প্রতিপাদ বিন্দু]] বা antipodal point। যেমন— ভৌগলিকভৌগোলিক উত্তর ও দক্ষিণ মেরু পরস্পরের বিপরীত-পৃষ্ঠ বিন্দু। যদি গোলক পৃষ্ঠের দুটি বিন্দু পরস্পরের [[বিপরীত-পৃষ্ঠ বিন্দু]] বা প্রতিপাদ বিন্দু হয় তবে এ দুটি বিন্দু দিয়ে কেবল মাত্র একটি মহাবৃত্ত অতিক্রম করবে, আবার ঐ বিন্দুদ্বয় পরস্পরের বিপরীত-পৃষ্ঠ বিন্দু হলে এদের মধ্য দিয়ে [[অসীম]] সংখ্যক মহাবৃত্ত পাওয়া যাবে। যেমন— পৃথিবীর [[উত্তর মেরু|উত্তর]] ও [[দক্ষিণ মেরু]] অতিক্রমকারী অসংখ্য মহাবৃত্ত পাওয়া যাবে। গোলক পৃষ্ঠের যে কোন দুটি বিন্দু দিয়ে অতিক্রমকারী মহাবৃত্তের [[বৃত্তচাপ]] হল ঐ বিন্দুদ্বয়ের অন্তর্গত ক্ষুদ্রতম বৃত্তচাপ এবং এই বৃত্তচাপ উক্ত বিন্দুদ্বয়ের ক্ষুদ্রতম দূরত্বকে নির্দেশ করে। একারণে এক স্থান থেকে কোন গন্তব্যে যাওয়ার উদ্দেশ্যে জাহাজ ও বিমানগুলো তাদের চলার পথে ঐ স্থান দুটি দিয়ে কল্পিত মহাবৃত্তকে অনুসরণ করার চেষ্টা করে। কারণ এতে জ্বালানি ও সময় দুটিরই সাশ্রয় হয়। তবে স্থলপথের ক্ষেত্রে বিভিন্ন বাধার (যেমন— পাহাড়) কারণে মহাবৃত্ত রেখাকে অনুসরণ অসুবিধাজনক। উল্লেখিত ক্ষুদ্রতম বৃত্তচাপ [[ইউক্লিডীয় জ্যামিতি|ইউক্লিডীয় জ্যামিতির]] [[সরল রেখা|সরল রেখার]] ধারণার অনুরূপ। [[রেইম্যানীয় জ্যামিতি|রেইম্যানীয় জ্যামিতিতে]] গোলীয় পৃষ্ঠের এ ধরনের (ক্ষুদ্রতম বৃত্তচাপ) দূরত্বকেই বিবেচনা করা হয় এবং [[রেইম্যানীয় বৃত্ত]] আদতে মহাবৃত্ত। এই মহাবৃত্তগুলোকে বা তাদের বৃত্তচাপকেই গোলকের [[জিওডেসিক]] বলা হয়।
 
[[উচ্চতর মাত্রা|উচ্চতর মাত্রার]] ক্ষেত্রে, [[n-গোলক]] ও '''R'''<sup>''n'' + 1</sup> ইউক্লিডীয় স্থানে উৎসগামী [[দ্বি-সমতল|দ্বি-সমতলের]] ছেদরেখাই n-গোলকের মহাবৃত্ত।
 
==প্রয়োগ==
[[খ-গোলক|খ-গোলকে]] উল্লেখযোগ্য কয়েকটি মহবৃত্ত হল: [[নিরক্ষরেখা]], [[ভৌগলিকভৌগোলিক নিরক্ষরেখা]], [[ভৌগোলিক দিগন্ত]], [[সূর্যপথ]]<ref>পৃথিবীর উপর দিয়ে কল্পিত যে রেখা বরাবর সূর্য গমন করে তাকে সূর্যপথ বা ecliptic বলে।</ref>, [[চৌম্বক নিরক্ষরেখা]], [[তাপীয় নিরক্ষরেখা]] (২১শে মার্চ ও ২৩শে সেপ্টেম্বর)। এছাড়া যে কোন দ্রাঘিমা রেখা এবং এর বিপরীত দ্রাঘিমা রেখাও মহাবৃত্ত গঠন করে। যেমন [[মূল মধ্যরেখা]] বা {{math|0°}} [[দ্রাঘিমাংশ|দ্রাঘিমা রেখা]] এবং {{math|180°}} দ্রাঘিমা রেখা একটি মহাবৃত্ত তৈরি করে। অনুরূপভাবে, {{math|125°}} পূর্ব এবং {{math|55°}} পশ্চিম দ্রাঘিমা রেখার সমন্বয়ে কল্পিত বৃত্তও একটি মহাবৃত্ত।
 
যেহেতু গোলীয় পৃষ্ঠের যে কোন দুটি বিন্দুগামী ক্ষুদ্রতম চাপ গোলীয় পৃষ্ঠ বরাবর ঐ বিন্দুদ্বয়ের ক্ষুদ্রতম দূরত্বকে নির্দেশ করে এবং যেহেতু এই ক্ষুদ্রতম চাপ ([[জিওডেসিক]]) আদতে মহাবৃত্তের অংশবিশেষ তাই [[পৃথিবী]] (যদিও পৃথিবী প্রকৃত গোলাকার নয়) এবং অন্যান্য গোলীয় [[জ্যোতির্বৈজ্ঞানিক বস্তু|জ্যোতির্বৈজ্ঞানিক বস্তুর]] পৃষ্ঠতলের দুটি অবস্থানের নেভিগেশনে বিশেষতঃ আকাশ পথ ও জলপথের দিক নির্দেশনার ক্ষেত্রে এর প্রয়োগ গুরুত্বপূর্ণ। মহাবৃত্ত বরাবর দূরত্ব সর্বাপেক্ষা কম দূরত্ব হওয়ায় জাহাজ ও বিমানগুলোর চলার পথকে যথাসম্ভব মহাবৃত্তীয় রাখার চেষ্টা করা হয়। কারণ এতে যেমন জ্বালানি সাশ্রয় হয় তেমনি সময়ের ব্যবধানও কমে।
২১,৮৮৩টি

সম্পাদনা