"বেভারটন-হল্ট মডেল" পাতাটির দুইটি সংশোধিত সংস্করণের মধ্যে পার্থক্য

নিবন্ধ সম্প্রসারণ+রেফারেন্স যোগ
(বট নিবন্ধ পরিষ্কার করেছে। কোন সমস্যায় এর পরিচালককে জানান।)
(নিবন্ধ সম্প্রসারণ+রেফারেন্স যোগ)
ট্যাগ: মোবাইল সম্পাদনা মোবাইল ওয়েব সম্পাদনা
অরৈখিক হওয়া সত্ত্বেও সমীকরণটি সমাধান করা যায়। সমাধানটি নিম্নরূপঃ
<math>n_{{t}}={\frac{Kn_{0}}{n_{0}+(K-n_{0})R_{0}^{-t}}}</math>
উপরিবর্তী গঠনের জন্য এটি একটি [[লজিস্টিক সমীকরণ]] এবং এর লজিস্টিক রূপ হচ্ছে
 
<math>{\frac{dN}{dt}}=rN\left(1-{\frac{N}{K}})</math>.
<u>তথ্যসূত্রঃ</u>
==তথ্যসূত্র==
Beverton, R.J.H, Holt, S.J(1957):
On the Dynamics of Exploited Fish Populations, Fishery Investigations
Series II, Volume XIX, Ministry of Agriculture Fisheries and Food.
বেনামী ব্যবহারকারী