জীবন: সংশোধিত সংস্করণের মধ্যে পার্থক্য

বিষয়বস্তু বিয়োগ হয়েছে বিষয়বস্তু যোগ হয়েছে
~~~ অনুবাদঃজীবমণ্ডল ~~~
~~~ অনুবাদঃ পরিবেশগত অবস্থা ~~~
৭৩ নং লাইন:
 
====গাইয়া অনুসিদ্ধান্ত====
{{mainমূল articleনিবন্ধ|গাইয়া অনুসিদ্ধান্ত}}
The idea that the Earth is alive is found in philosophy and religion, but the first scientific discussion of it was by the Scottish scientist [[James Hutton]]. In 1785, he stated that the Earth was a superorganism and that its proper study should be [[physiology]]. Hutton is considered the father of [[geology]], but his idea of a living Earth was forgotten in the intense [[reductionism]] of the 19th century.<ref name=":1">{{cite book|title=Gaia: A New Look at Life on Earth|date=1979|publisher=Oxford University Press|year=|isbn=978-0-19-286030-9|location=|page=|pages=|quote=|author-link=James Lovelock|via=|first1=James|last1=Lovelock}}</ref>{{Rp|10}} The Gaia hypothesis, proposed in the 1960s by scientist [[James Lovelock]],<ref name="Lovelock1965">{{Cite journal |last1=Lovelock | first1=J. E. |date=1965 |title=A physical basis for life detection experiments |journal=[[Nature (journal)|Nature]] |volume=207 |issue=7 |pages=568–70 |doi=10.1038/207568a0 |pmid=5883628|bibcode = 1965Natur.207..568L }}</ref><ref>{{cite web | first1=James | last1=Lovelock | authorlink=James Lovelock | title=Geophysiology | work=Papers by James Lovelock | url=http://www.jameslovelock.org/page4.html#GEO }}</ref> suggests that life on Earth functions as a single organism that defines and maintains [[Natural environment|environmental]] conditions necessary for its survival.<ref name=":1" /> This hypothesis served as one of the foundations of the modern [[Earth system science]].
 
৮৩ নং লাইন:
 
====জীববিদ্যার জটিল ব্যবস্থা====
{{মূল নিবন্ধ|জীববিদ্যার জটিল ব্যবস্থা}}{{আরও দেখুন|গাণিতিক জীববিদ্যা}}
{{main article|Complex systems biology}}{{See also|Mathematical biology}}
Complex systems biology (CSB) is a field of science that studies the emergence of complexity in functional organisms from the viewpoint of [[dynamic systems]] theory.<ref>{{cite journal | last1 = Baianu | first1 = I. C. | date = 2006 | title = Robert Rosen's Work and Complex Systems Biology | url = | journal = Axiomathes | volume = 16 | issue = 1–2| pages = 25–34 | doi=10.1007/s10516-005-4204-z}}</ref> The latter is also often called [[systems biology]] and aims to understand the most fundamental aspects of life. A closely related approach to CSB and systems biology called relational biology is concerned mainly with understanding life processes in terms of the most important relations, and categories of such relations among the essential functional components of organisms; for multicellular organisms, this has been defined as "categorical biology", or a model representation of organisms as a [[category theory]] of biological relations, as well as an [[algebraic topology]] of the [[functional organization]] of living organisms in terms of their dynamic, complex [[Biological network|networks]] of metabolic, genetic, and [[epigenetic]] processes and [[signaling pathway]]s.<ref>* {{cite journal | last1 = Rosen | first1 = R. | date = 1958a | title = A Relational Theory of Biological Systems | url = | journal = Bulletin of Mathematical Biophysics | volume = 20 | issue = 3| pages = 245–60 | doi=10.1007/bf02478302}}</ref><ref>* {{cite journal | last1 = Rosen | first1 = R. | date = 1958b | title = The Representation of Biological Systems from the Standpoint of the Theory of Categories | url = | journal = Bulletin of Mathematical Biophysics | volume = 20 | issue = 4| pages = 317–41 | doi=10.1007/bf02477890}}</ref> Alternative but closely related approaches focus on the interdependance of constraints, where constraints can be either molecular, such as enzymes, or macroscopic, such as the geometry of a bone or of the vascular system.<ref>{{Cite journal|last=Montévil|first=Maël|last2=Mossio|first2=Matteo|date=2015-05-07|year=|title=Biological organisation as closure of constraints|url=https://www.academia.edu/11705712/Biological_organisation_as_closure_of_constraints|journal=Journal of Theoretical Biology|volume=372|pages=179–91|doi=10.1016/j.jtbi.2015.02.029|pmid=25752259|via=}}</ref>
 
১১৬ নং লাইন:
 
===হাইলোমরফিজম===
{{Mainমূল articleনিবন্ধ|হাইলোমরফিজম}}
[[File:Aristotelian Soul.png|thumb|upright=1.5|The [[Soul#Aristotle|structure of the souls]] of plants, animals, and humans, according to [[Aristotle]]]]
 
১২৪ নং লাইন:
 
===স্বতঃজনন===
{{Mainমূল articleনিবন্ধ|স্বতঃজনন}}
Spontaneous generation was the belief on the ordinary formation of living organisms without descent from similar organisms. Typically, the idea was that certain forms such as fleas could arise from inanimate matter such as dust or the supposed seasonal generation of mice and insects from mud or garbage.<ref>{{Cite book|title=Origines Sacrae|last=Stillingfleet|first=Edward|publisher=Cambridge University Press|year=1697|isbn=|location=|pages=|quote=|via=Internet Archive}}</ref>
 
১৩০ নং লাইন:
 
===প্রাণশক্তিবাদ===
{{Mainমূল articleনিবন্ধ|প্রাণশক্তিবাদ}}
Vitalism is the belief that the life-principle is non-material. This originated with [[Georg Ernst Stahl]] (17th century), and remained popular until the middle of the 19th century. It appealed to philosophers such as [[Henri Bergson]], [[Friedrich Nietzsche]], and [[Wilhelm Dilthey]],<ref>{{cite book | first1=Sanford | last1=Schwartz | title=C. S. Lewis on the Final Frontier: Science and the Supernatural in the Space Trilogy | publisher=Oxford University Press | date=2009 | isbn=978-0-19-988839-9 | page=56 | url=https://books.google.com/books?id=4hQLdPtJe9EC&pg=PA56 }}</ref> anatomists like [[Marie François Xavier Bichat]], and chemists like [[Justus von Liebig]].<ref name=Wilkinson>{{cite journal | first1=Ian | last1=Wilkinson | title=History of Clinical Chemistry&nbsp;– Wöhler & the Birth of Clinical Chemistry | journal=The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine | volume=13 | issue=4 | date=1998 | url=http://www.ifcc.org/ifccfiles/docs/130304003.pdf | accessdate=27 December 2015 }}</ref> Vitalism included the idea that there was a fundamental difference between organic and inorganic material, and the belief that [[organic material]] can only be derived from living things. This was disproved in 1828, when [[Friedrich Wöhler]] prepared [[urea]] from inorganic materials.<ref>{{cite journal| title = Ueber künstliche Bildung des Harnstoffs| author = [[Friedrich Wöhler]]| journal = [[Annalen der Physik und Chemie]]| volume = 88| issue = 2| pages = 253–56| date = 1828| doi = 10.1002/andp.18280880206| url = http://gallica.bnf.fr/ark:/12148/bpt6k15097k/f261.chemindefer|bibcode = 1828AnP....88..253W }}</ref> This [[Wöhler synthesis]] is considered the starting point of modern [[organic chemistry]]. It is of historical significance because for the first time an [[organic compound]] was produced in [[inorganic compound|inorganic]] reactions.<ref name=Wilkinson/>
 
১৩৭ নং লাইন:
==ব্যুৎপত্তি==
{{জীবন সময়রেখা}}
{{Mainমূল articleনিবন্ধ|জীবনের উৎপত্তি}}
The [[age of the Earth]] is about 4.54 billion years.<ref name="USGS1997">{{cite web | date=1997 | title=Age of the Earth | url=http://pubs.usgs.gov/gip/geotime/age.html | publisher=U.S. Geological Survey | accessdate=10 January 2006
| archiveurl= https://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html| archivedate= 23 December 2005 | deadurl= no}}</ref><ref>{{cite journal | last=Dalrymple | first=G. Brent | title=The age of the Earth in the twentieth century: a problem (mostly) solved | journal=Special Publications, Geological Society of London | date=2001 | volume=190 | issue=1 | pages=205–21 | doi=10.1144/GSL.SP.2001.190.01.14 |bibcode = 2001GSLSP.190..205D }}</ref><ref>{{cite journal | author= Manhesa, Gérard| author2= Allègre, Claude J.| author3= Dupréa, Bernard| author4= Hamelin, Bruno | last-author-amp= yes | title=Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics | journal=[[Earth and Planetary Science Letters]] | date=1980 | volume=47 | issue= 3 | pages=370–82 | doi=10.1016/0012-821X(80)90024-2 | bibcode=1980E&PSL..47..370M}}</ref> Evidence suggests that life on Earth has existed for at least 3.5&nbsp;[[bya|billion years]],<ref name="AB-20021014">{{cite web|url=http://www.astrobio.net/exclusive/293/when-did-life-on-earth-begin-ask-a-rock |title=When Did Life on Earth Begin? Ask a Rock |last=Tenenbaum |first=David |date=14 October 2002 |publisher= |archive-url=https://web.archive.org/web/20130520084101/http://www.astrobio.net/exclusive/293/when-did-life-on-earth-begin-ask-a-rock |archive-date=20 May 2013 |dead-url=yes |work=Astrobiology Magazine |accessdate=13 April 2014 |df= }}</ref><ref name="AP-20151019">{{cite news |last=Borenstein |first=Seth |title=Hints of life on what was thought to be desolate early Earth |url=http://apnews.excite.com/article/20151019/us-sci--earliest_life-a400435d0d.html |date=19 October 2015 |work=[[Excite]] |location=Yonkers, NY |publisher=[[Mindspark Interactive Network]] |agency=[[Associated Press]] |accessdate=2015-10-20}}</ref><ref name="PNAS-20151014-pdf">{{cite journal |last1=Bell |first1=Elizabeth A. |last2=Boehnike |first2=Patrick |last3=Harrison |first3=T. Mark |last4=Mao |first4=Wendy L. |display-authors=3 |date=19 October 2015 |title=Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon |url=http://www.pnas.org/content/early/2015/10/14/1517557112.full.pdf |format=PDF |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |doi=10.1073/pnas.1517557112 |issn=1091-6490 |accessdate=2015-10-20 |pmid=26483481 |pmc=4664351 |volume=112 |issue=47 |pages=14518–21|bibcode=2015PNAS..11214518B }} Early edition, published online before print.</ref><ref name=":2">{{Cite news|url=https://www.newscientist.com/article/dn14245-did-newborn-earth-harbour-life|title=Did newborn Earth harbour life?|last=Courtland|first=Rachel|date=2 July 2008|work=New Scientist|access-date=14 November 2016|via=}}</ref><ref name=":3">{{Cite news|url=https://www.reuters.com/article/us-asteroids-idUSTRE54J5PX20090520|title=Study turns back clock on origins of life on Earth|last=Steenhuysen|first=Julie|date=20 May 2009|work=Reuters|access-date=14 November 2016|via=}}</ref><ref>{{Cite journal|title=Evidence of Archean life: Stromatolites and microfossils|journal=Precambrian Research|volume=158|issue=3–4|pages=141|bibcode=2007PreR..158..141S|author1=Schopf|first1=J. William|last2=Kudryavtsev|first2=Anatoliy B|last3=Czaja|first3=Andrew D|last4=Tripathi|first4=Abhishek B|year=2007|doi=10.1016/j.precamres.2007.04.009}}</ref><ref>{{Cite journal|title=Fossil evidence of Archaean life|journal=Philos. Trans. R. Soc. Lond. B Biol. Sci.|volume=29}}</ref><ref name="RavenJohnson2002">{{cite book | first=Peter | last=Hamilton Raven | first2=George | last2=Brooks Johnson | title=Biology | url=https://books.google.com/books?id=GtlqPwAACAAJ | date=2002 | publisher=McGraw-Hill Education | isbn=978-0-07-112261-0 | page=68 | accessdate=7 July 2013 }}</ref><ref>{{cite book | first1=Clare | last1=Milsom | first2=Sue | last2=Rigby | title=Fossils at a Glance | edition=2nd | publisher=John Wiley & Sons | date=2009 | isbn=1-4051-9336-0 | page=134 | url=https://books.google.com/books?id=OdrCdxr7QdgC&pg=PA134 }}</ref> with the oldest physical [[Trace fossil|traces]] of life dating back 3.7 billion years;<ref name="NG-20131208">{{cite journal | url=http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2025.html | first=Yoko | last=Ohtomo | first2=Takeshi | last2=Kakegawa | first3=Akizumi | last3=Ishida | first4=Toshiro | last4=Nagase | first5=Minik T. | last5=Rosing | title=Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks | journal=[[Nature Geoscience]] | doi=10.1038/ngeo2025 | date=8 December 2013 | volume=7 | pages=25–28 | bibcode=2014NatGe...7...25O}}</ref><ref name="AP-20131113">{{cite news |last=Borenstein |first=Seth |title=Oldest fossil found: Meet your microbial mom |url=http://apnews.excite.com/article/20131113/DAA1VSC01.html |date=13 November 2013 |agency=Associated Press }}</ref><ref name="AST-20131108">{{cite journal | last1=Noffke | first1=Nora | last2=Christian | first2=Daniel | last3=Wacey | first3=David | last4=Hazen | first4=Robert M. | title=Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia | url=http://online.liebertpub.com/doi/abs/10.1089/ast.2013.1030 | date=8 November 2013 | journal=[[Astrobiology (journal)|Astrobiology]] | volume=13 | issue=12 | pages=1103–24 | doi=10.1089/ast.2013.1030 | bibcode=2013AsBio..13.1103N | pmid=24205812 | pmc=3870916}}</ref> however, some theories, such as the [[Late Heavy Bombardment#Geological consequences on Earth|Late Heavy Bombardment theory]], suggest that life on Earth may have started even earlier, as early as 4.1–4.4 billion years ago,<ref name="AB-20021014" /><ref name="AP-20151019">{{cite news |last=Borenstein |first=Seth |title=Hints of life on what was thought to be desolate early Earth |url=http://apnews.excite.com/article/20151019/us-sci--earliest_life-a400435d0d.html |date=19 October 2015 |work=[[Excite]] |location=Yonkers, NY |publisher=[[Mindspark Interactive Network]] |agency=[[Associated Press]] |accessdate=2015-10-20}}</ref><ref name="PNAS-20151014-pdf">{{cite journal |last1=Bell |first1=Elizabeth A. |last2=Boehnike |first2=Patrick |last3=Harrison |first3=T. Mark |last4=Mao |first4=Wendy L. |display-authors=3 |date=19 October 2015 |title=Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon |url=http://www.pnas.org/content/early/2015/10/14/1517557112.full.pdf |format=PDF |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |doi=10.1073/pnas.1517557112 |issn=1091-6490 |accessdate=2015-10-20 |pmid=26483481 |pmc=4664351 |volume=112 |issue=47 |pages=14518–21|bibcode=2015PNAS..11214518B }} Early edition, published online before print.</ref><ref name=":2" /><ref name=":3" /> and the [[Biochemistry|chemistry leading to life]] may have begun shortly after the [[Big Bang]], [[Age of the universe|13.8 billion years ago]], during an epoch when the [[universe]] was only 10–17 million years old.<ref name="IJA-2014October">{{cite journal |last=Loeb |first=Abraham |authorlink=Abraham Loeb |title=The Habitable Epoch of the Early Universe |url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9371049&fileId=S1473550414000196 |date=October 2014 |journal=[[International Journal of Astrobiology]] |volume=13 |issue=4 |pages=337–39 |doi=10.1017/S1473550414000196 |accessdate=15 December 2014 |bibcode=2014IJAsB..13..337L |citeseerx=10.1.1.680.4009 }}</ref><ref name="ARXIV-20131202">{{cite journal |last=Loeb |first=Abraham |authorlink=Abraham Loeb |title=The Habitable Epoch of the Early Universe |date=2 December 2013 |volume=13 |issue=4 |pages=337–39 |arxiv=1312.0613v3 |bibcode=2014IJAsB..13..337L |doi=10.1017/S1473550414000196 |journal=International Journal of Astrobiology}}</ref><ref name="NYT-20141202">{{cite news |last=Dreifus |first=Claudia |authorlink=Claudia Dreifus |title=Much-Discussed Views That Go Way Back&nbsp;– Avi Loeb Ponders the Early Universe, Nature and Life |url=https://www.nytimes.com/2014/12/02/science/avi-loeb-ponders-the-early-universe-nature-and-life.html |date=2 December 2014 |work=[[New York Times]] |accessdate=3 December 2014 }}</ref>
১৬৬ নং লাইন:
 
According to the [[panspermia]] hypothesis, [[microorganism|microscopic life]]—distributed by [[meteoroids]], [[asteroid]]s and other [[Small Solar System body|small Solar System bodies]]—may exist throughout the universe.<ref name="USRA-2010">{{cite web |last=Rampelotto |first=P.H. |title=Panspermia: A Promising Field Of Research |url=http://www.lpi.usra.edu/meetings/abscicon2010/pdf/5224.pdf |format=[[PDF]] |date=2010 |accessdate=3 December 2014 }}</ref>
 
==পরিবেশগত অবস্থা==
[[File:20100422 235222 Cyanobacteria.jpg|thumb|[[Cyanobacteria]] [[oxygen catastrophe|dramatically changed]] the composition of life forms on Earth by leading to the near-extinction of [[Anaerobic organism|oxygen-intolerant organisms]].]]
The diversity of life on Earth is a result of the dynamic interplay between [[genetic opportunity]], metabolic capability, [[environment (biophysical)|environmental]] challenges,<ref name=astrobiology>{{cite web |url=http://astrobiology.arc.nasa.gov/roadmap/g5.html |archiveurl=https://www.webcitation.org/664nY11q7?url=http://astrobiology.arc.nasa.gov/roadmap/g5.html |archivedate=11 March 2012 |title=Understand the evolutionary mechanisms and environmental limits of life |accessdate=13 July 2009 |last= Rothschild |first=Lynn |date=September 2003 |publisher=NASA}}</ref> and [[symbiosis]].<ref>{{Cite journal |title=Symbiosis and the origin of life |journal=Origins of Life and Evolution of Biospheres |date= April 1977 |first=G.A.M. |last=King |volume=8 |issue=1 |pages=39–53 |doi=10.1007/BF00930938 |url=http://www.springerlink.com/content/n10p775113175l67/ |accessdate=22 February 2010 |bibcode=1977OrLi....8...39K}}</ref><ref>{{Cite book |last= Margulis |first=Lynn |title=The Symbiotic Planet: A New Look at Evolution |publisher=Orion Books Ltd. |date=2001 |location=London, England |isbn=0-7538-0785-8}}</ref><ref>{{Cite book |author=Douglas J. Futuyma |author2=Janis Antonovics |title=Oxford surveys in evolutionary biology: Symbiosis in evolution |publisher=Oxford University Press |date=1992 |volume=8 |location=London, England |pages=347–74 |isbn= 0-19-507623-0}}</ref> For most of its existence, Earth's habitable environment has been dominated by [[microorganism]]s and subjected to their metabolism and evolution. As a consequence of these microbial activities, the physical-chemical environment on Earth has been changing on a [[geologic time scale]], thereby affecting the path of evolution of subsequent life.<ref name=astrobiology/> For example, the release of molecular [[oxygen]] by [[cyanobacteria]] as a by-product of [[photosynthesis]] induced global changes in the Earth's environment. Because oxygen was toxic to most life on Earth at the time, this posed novel evolutionary challenges, and ultimately resulted in the formation of Earth's major animal and plant species. This interplay between organisms and their environment is an inherent feature of living systems.<ref name=astrobiology/>
-->
==পরিবেশগত অবস্থা==
[[File:20100422 235222 Cyanobacteria.jpg|thumb|[[সায়ানোব্যাকটেরিয়া]]র [[অক্সিজেনের উৎস সৃষ্টির ঘটনা|নাটকীয় পরিবর্তন]] পৃথিবীতে প্রাণ ধারণের উপাদানগুলোর পরিবর্তন ঘটায় ফলশ্রুতিতে [[অবাত অণুজীব|অক্সিজেন সহ্য করতে না পারা অণুজীব]]গুলোর প্রায় বিলুপ্তি ঘটে।]]
পৃথিবীতে জীব বৈচিত্র্য ঘটার পিছনে কাজ করেছে [[জিনতত্ত্ব|জেনেটিক পরিবর্তনের সুযোগ]], বিপাকীয় ক্ষমতা, [[পরিবেশ (বায়োফিজিক্যাল)|পরিবেশগত]] চ্যালেঞ্জ<ref name=astrobiology>{{cite web |url=http://astrobiology.arc.nasa.gov/roadmap/g5.html |archiveurl=https://www.webcitation.org/664nY11q7?url=http://astrobiology.arc.nasa.gov/roadmap/g5.html |archivedate=11 March 2012 |title=Understand the evolutionary mechanisms and environmental limits of life |accessdate=13 July 2009 |last= Rothschild |first=Lynn |date=September 2003 |publisher=NASA}}</ref> এবং [[মিথোজীবিতা]] এগুলোর মধ্যে গতিশীল মিথস্ক্রিয়তা।<ref>{{Cite journal |title=Symbiosis and the origin of life |journal=Origins of Life and Evolution of Biospheres |date= April 1977 |first=G.A.M. |last=King |volume=8 |issue=1 |pages=39–53 |doi=10.1007/BF00930938 |url=http://www.springerlink.com/content/n10p775113175l67/ |accessdate=22 February 2010 |bibcode=1977OrLi....8...39K}}</ref><ref>{{Cite book |last= Margulis |first=Lynn |title=The Symbiotic Planet: A New Look at Evolution |publisher=Orion Books Ltd. |date=2001 |location=London, England |isbn=0-7538-0785-8}}</ref><ref>{{Cite book |author=Douglas J. Futuyma |author2=Janis Antonovics |title=Oxford surveys in evolutionary biology: Symbiosis in evolution |publisher=Oxford University Press |date=1992 |volume=8 |location=London, England |pages=347–74 |isbn= 0-19-507623-0}}</ref> পৃথিবীর অস্তিত্বের অধিকাংশ সময় জুড়েই, এর বসবাসযোগ্য পরিবেশে প্রাধান্য বিস্তার করে রেখেছে [[অণুজীব|অণূজীব]] এবং তাদের বিপাক ও বিবর্তন। এর ফলাফলস্বরূপ এই অণুজীবীও কার্যক্রমের পৃথিবীর বাহ্যিক-রাসায়নিক পরিবেশের পরিবর্তন ঘটছে একটি [[ভূতাত্ত্বিক সময়|ভূতাত্ত্বিক সময় রেখা]] ধরে, যা প্রভাব রাখছে পরিবর্তিতে ঘটা বিবর্ততিত প্রাণের উপর।<ref name=astrobiology/> উদাহারণস্বরূপ, [[সায়ানোব্যাকটেরিয়া|সায়ানোব্যাকটেরিয়া]] দ্বারা [[সালোকসংশ্লেষ|সালোকসংশ্লেষনের]] সময় বাই-প্রোডাক হিসাবে নিষ্কাসিত [[অক্সিজেন]] পুরো পৃথিবীর পরিবেশে একটি ব্যাপক আকারের পরিবর্তন নিয়ে আসে। এর কারণ হল ওই সময় পৃথিবীর অধিকাংশ জীবের জন্য অক্সিজেন ছিল বিষস্বরূপ, এটি নাটকীয় বিবর্তনীয় চ্যালেঞ্জের সৃষ্টি করে, এবং পরিশেষে এই ঘটনাই পৃথিবীর অধিকাংশ প্রাণী ও উদ্ভিদ শ্রেণীর বিকাশে কাজ করে। এই জীব এবং তাদের পরিবেশের মধ্যে এই পারস্পরিক সম্পর্ক একটি প্রাণবন্ত জীব-ব্যবস্থার অন্তর্নিহিত বৈশিষ্ট্য।<ref name=astrobiology/>
 
===জীবমণ্ডল===
{{মূল নিবন্ধ|জীবমণ্ডল}}
'https://bn.wikipedia.org/wiki/জীবন' থেকে আনীত