"মহাকর্ষ" পাতাটির দুইটি সংশোধিত সংস্করণের মধ্যে পার্থক্য

সম্পাদনা সারাংশ নেই
(2A03:2880:3010:7FF1:FACE:B00C:0:1-এর সম্পাদিত সংস্করণ হতে NS Sizan-এর সম্পাদিত সর্বশেষ সংস্...)
তার সূত্রটি ছিল
"মহাবিশ্বের প্রতিটি বস্তুকণা একে অপরকে নিজের কেন্দ্রের দিকে আকর্ষণ করে এবং এ আকর্ষণ বলের মান বস্তুকণাদ্বয়ের ভরের গুণফলের সমানুপাতিক ও এদের মধ্যবর্তী দূরত্বের বর্গের ব্যাস্তানুপাতিক এবং এ আকর্ষণ তাদের কেন্দ্র সংযোজক সরলরেখা বরাবর ক্রিয়া করে ৷"
এ সূত্রানুসারে যদি দুটি বস্তুর ভর যথাক্রমে m1 ও m2 এবং মধ্যবর্তী দূরত্ব d হয় তবে <math>F=Gm1m2G\frac{m_1 m_2} {r^2</d*dmath>
যেখানে G হল সার্বজনীন মহাকর্ষীয় ধ্রুবক।
 
[[মহাকর্ষীয় ক্ষেত্র|মহাকর্ষীয় ক্ষেত্রের]] কোনো বিন্দুতে একক ভরের কোনো বস্তু স্থাপন করলে এর উপর যে বল প্রযুক্ত হয় তাকে ঐ ক্ষেত্রের দরুন ঐ বিন্দুর আকর্ষণ বল বা মহাকর্ষীয় প্রাবল্য বলে।
মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে m ভরের বস্তুর উপর F বল ক্রিয়া করলে ঐ বিন্দুতে মহাকর্ষীয় প্রাবল্য হবে ,
<math>E = FFm</mmath>
এই সমীকরন থেকে দেখা যায় , m এর মান বৃদ্বি পেলে E হ্রাস পায় ৷ মহাকর্ষীয় ক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্য বিভিন্ন হবে। বস্তুর ভর বেশি হলে প্রাবল্য বাড়বে, দূরত্ব বেশি হলে প্রাবল্য কমবে। এটি একটি ভেক্টর রাশি । এর মান ও দিক আছে ৷ কোনো বিন্দুতে একাধিক প্রাবল্য ক্রিয়াশীল হলে ভেক্টর যোগের পদ্বতি অনুযায়ী ঐ বিন্দুতে লব্দি-প্রাবল্য গণনা করা যায় ৷ প্রাবল্যের অভিমুখই মহাকর্ষীয় ক্ষূত্রের অভিমুখ নির্দেশ করে ৷ অনেক ক্ষেত্রের প্রাবল্য বোঝাতে শুধু মহাকর্ষীয় ক্ষেত্র লেখা হয় ৷<ref>পদার্থবিজ্ঞান প্রথম পত্র by ড.অামির হোসেন খান,প্রফেসর মোহাম্মদ ইসহাক,ড.মো.নজরুল ইসলাম</ref> ৷ এসআই পদ্ধতিতে প্রাবল্যের একক নিউটন পার কিলোগ্রাম ৷
 
৩৭টি

সম্পাদনা