"ক্যাটাগরি তত্ত্ব" পাতাটির দুইটি সংশোধিত সংস্করণের মধ্যে পার্থক্য

সম্পাদনা সারাংশ নেই
 
[[File:Commutative diagram for morphism.svg|right|thumb|200px|A category with objects ''X'', ''Y'', ''Z'' and morphisms ''f'', ''g'', ''g'' ∘ ''f'', and three identity morphisms (not shown) 1<sub>''X''</sub>, 1<sub>''Y''</sub> and 1<sub>''Z''</sub>.]]
'''ক্যাটাগরি তত্ত্ব'''<ref>{{harnvb|Awodey|2006}}</ref> [[গণিত|গণিতের]] একটি তত্ত্ব এবং এর ধারণা 'বস্তু' ও ''তীর'' -এর সংকলন।
'''ক্যাটাগরি তত্ত্ব'''<ref>{{harnvb|Awodey|2006}}</ref> is used to formalize [[mathematics]] and its concepts as a collection of ''objects'' and ''arrows'' (also called [[morphism]]s). Category theory can be used to formalize concepts of other high-level [[abstractions]] such as [[set theory]], [[ring theory]], and [[group theory]]. Several terms used in category theory, including the term "morphism", differ from their uses within mathematics itself. In category theory, a "morphism" obeys a set of conditions specific to category theory itself. Thus, care must be taken to understand the context in which statements are made.
 
 
<math>a^2+b^2</math>
<!--
২৬,৬৮৮টি

সম্পাদনা