ফুরিয়ে রূপান্তর: সংশোধিত সংস্করণের মধ্যে পার্থক্য

বিষয়বস্তু বিয়োগ হয়েছে বিষয়বস্তু যোগ হয়েছে
Addbot (আলোচনা | অবদান)
বট: 47 টি আন্তঃউইকি সংযোগ সরিয়ে নেওয়া হয়েছে, যা এখন উইকিউপাত্তের - d:q6520159 এ র...
WikitanvirBot I (আলোচনা | অবদান)
বট কসমেটিক পরিবর্তন করছে; কোনো সমস্যা?
৫ নং লাইন:
ফাংশনটি যদি পর্যাবৃত্ত হয়, তাহলে ফুরিয়ে রূপান্তরকে সরলীকরণ করা যায়। এক্ষেত্রে ফাংশনটির কিছু জটিল বিস্তার পরিমাপ করলেই ফুরিয়ে রূপান্তর পাওয়া যায়। এই জটিল বিস্তারগুলোকে ফুরিয়ে ধারার সহগ (Fourier series coefficients) বলা হয়। কাল-ডোমেইন সংকেতকে সরাসরি ফুরিয়ে রূপান্তর করলে অবিচ্ছিন্ন ফুরিয়ে রূপান্তর পাওয়া যায়। কিন্তু কম্পিউটারের জায়গা বাচানোর জন্য সাধারণত কাল-ডোমেইন সংকেতকে একটি নির্দিষ্ট কাল অন্তর অন্তর স্যাম্পল করা হয়। স্যাম্পল করার পর ফাংশনটিকে ফুরিয়ে রূপান্তর করলেও আসল অবিচ্ছিন্ন ফুরিয়ে রূপান্তরের একটা সংস্করণ উদ্ধার করা সম্ভব। এটাকে বলা হয় [[কাল-বিচ্ছিন্ন ফুরিয়ে রূপান্তর]] (Discrete-time Fourier transform)।
 
== সংজ্ঞা ==
সমাকলনযোগ্য কোন ফাংশন, <math>f</math> এর ফুরিয়ে রূপান্তর, <math>\hat{f}</math> এর সংজ্ঞা অনেকভাবে দেয়া যায়, অনেকভাবে দেয়ার রীতিও রয়েছে। এই নিবন্ধে যে সংজ্ঞাটি ব্যবহার করা হবে তা হলো:
 
১৬ নং লাইন:
মূল ফাংশনকে তার ফুরিয়ে রূপান্তর থেকে যে পুনরুদ্ধার করা যায় এটাকে বলা হয় ফুরিয়ে প্রত্যাবর্তন উপপাদ্য। [[ইয়োসেফ ফুরিয়ে]] তার তাপীয় তত্ত্বের মাধ্যমে এই উপপাদ্য প্রথম প্রণয়ন করেছিলেন {{harv|Fourier|1822|p=525}}। অবশ্য আধুনিক দৃষ্টিকোণ থেকে এই উপপাদ্যের প্রকৃত প্রমাণ যাকে বলা যায় তা অনেক পরে এসেছে {{harv|Titchmarsh|1948|p=1}}। ƒ and ƒ̂, ফাংশন দুটিকে অনেক সময় ফুরিয়ে সমাকলন জোড় বা ফুরিয়ে রূপান্তর জোড় বলা হয়। ফুরিয়ে রূপান্তর প্রকাশের অন্যান্য নিয়ম আছে যা নিচে আলোচিত হবে। উল্লেখ্য ইউক্লিডীয় স্থানে ফুরিয়ে রূপান্তরের ক্ষেত্রে অনেক সময় ''x'' চলক দ্বারা অবস্থান এবং ξ চলক দ্বারা ভরবেগ বোঝানো হয়।
 
== তথ্যসূত্র ==
* {{Citation |editor-last=Boashash|editor-first=B.|title=Time-Frequency Signal Analysis and Processing: A Comprehensive Reference|publisher=Elsevier Science|publication-place= Oxford|year=২০০৩|isbn=0-08-044335-4}}
* {{Citation | author =Bochner S., K. S. Chandrasekharan | title=Fourier Transforms | publisher= Princeton University Press | year=১৯৪৯}}
* {{citation|first=R. N.|last=Bracewell|title=The Fourier Transform and Its Applications|edition=3rd|publication-place=Boston|publisher=McGraw-Hill|year=২০০০|isbn=0-07-116043-4}}.
* {{citation|first1=George|last1=Campbell|first2=Ronald|last2=Foster|title=Fourier Integrals for Practical Applications|publication-place=New York|publisher=D. Van Nostrand Company, Inc.|year=১৯৪৮}}.
৩৭ নং লাইন:
* {{citation|first1=A. D.|last1=Polyanin|first2=A. V.|last2=Manzhirov|title=Handbook of Integral Equations|publisher=CRC Press|publication-place=Boca Raton|year=১৯৯৮|isbn=0-8493-2876-4}}.
* {{citation|first=Walter|last=Rudin|title=Real and Complex Analysis|publisher=McGraw Hill| edition=Third|year=১৯৮৭|isbn=0-07-100276-6|location=Singapore }}.
* {{citation |first=Matiur |last=Rahman |url=http://books.google.com/books?id=k_rdcKaUdr4C&pg=PA10 |isbn=1845645642 |publisher=WIT Press |title=Applications of Fourier Transforms to Generalized Functions |year=২০১১}}.
* {{citation |last1=Stein|first1=Elias|first2=Rami|last2=Shakarchi|title=Fourier Analysis: An introduction|publisher=Princeton University Press|year=২০০৩|isbn=0-691-11384-X|url=http://books.google.com/books?id=FAOc24bTfGkC&pg=PA158&dq=%22The+mathematical+thrust+of+the+principle%22&hl=en&sa=X&ei=Esa7T5PZIsqriQKluNjPDQ&ved=0CDQQ6AEwAA#v=onepage&q=%22The%20mathematical%20thrust%20of%20the%20principle%22&f=false}}.
* {{citation|last1=Stein|first1=Elias|first2=Guido|last2=Weiss|title=Introduction to Fourier Analysis on Euclidean Spaces|publisher=Princeton University Press|year=১৯৭১|isbn=978-0-691-08078-9|location=Princeton, N.J. |url=http://books.google.com/books?id=YUCV678MNAIC&dq=editions:xbArf-TFDSEC&source=gbs_navlinks_s}}.